The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:which can then be integrated term by term.
For other types of functions, see lists of integrals.
\int | f'(x) |
f(x) |
dx=ln\left|f(x)\right|+C
\int | 1 |
x2+a2 |
dx=
1 | \arctan | |
a |
x | |
a |
+C
\int | 1 |
x2-a2 |
dx=
1 | ln\left| | |
2a |
x-a | |
x+a |
\right|+C=\begin{cases}\displaystyle-
1 | \operatorname{artanh} | |
a |
x | |
a |
+C=
1 | ln | |
2a |
a-x | |
a+x |
+C&(for|x|<|a|)\\[12pt]\displaystyle-
1 | \operatorname{arcoth} | |
a |
x | |
a |
+C=
1 | ln | |
2a |
x-a | |
x+a |
+C&(for|x|>|a|)\end{cases}
\int | 1 |
a2-x2 |
dx=
1 | ln\left| | |
2a |
a+x | |
a-x |
\right|+C=\begin{cases}\displaystyle
1 | \operatorname{artanh} | |
a |
x | |
a |
+C=
1 | ln | |
2a |
a+x | |
a-x |
+C&(for|x|<|a|)\\[12pt]\displaystyle
1 | \operatorname{arcoth} | |
a |
x | |
a |
+C=
1 | ln | |
2a |
x+a | |
x-a |
+C&(for|x|>|a|)\end{cases}
\int
dx | ||||||
|
=
1 | |
2n-1 |
2n-1 | |
\sum | |
k=1 |
\sin\left(
2k-1 | |
2n |
\pi\right)\arctan\left[\left(x-\cos\left(
2k-1 | |
2n |
\pi\right)\right)\csc\left(
2k-1 | |
2n |
\pi\right)\right]-
1 | |
2 |
\cos\left(
2k-1 | |
2n |
\pi\right)ln\left|x2-2x\cos\left(
2k-1 | |
2n |
\pi\right)+1\right|+C
Many of the following antiderivatives have a term of the form ln |ax + b|. Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function.[1] However, it is conventional to omit this from the notation. For example,is usually abbreviated aswhere C is to be understood as notation for a locally constant function of x. This convention will be adhered to in the following.
\int(ax+b)ndx=
(ax+b)n+1 | |
a(n+1) |
+C (forn ≠ -1)
\int | x |
ax+b |
dx=
x | |
a |
-
b | |
a2 |
ln\left|ax+b\right|+C
\int | mx+n |
ax+b |
dx=
m | |
a |
x+
an-bm | |
a2 |
ln\left|ax+b\right|+C
\int | x |
(ax+b)2 |
dx=
b | |
a2(ax+b) |
+
1 | |
a2 |
ln\left|ax+b\right|+C
\int | x |
(ax+b)n |
dx=
a(1-n)x-b | |
a2(n-1)(n-2)(ax+b)n-1 |
+C (forn\not\in\{1,2\})
\intx(ax+b)ndx=
a(n+1)x-b | |
a2(n+1)(n+2) |
(ax+b)n+1+C (forn\not\in\{-1,-2\})
\int | x2 |
ax+b |
dx=
b2ln(\left|ax+b\right|) | + | |
a3 |
ax2-2bx | |
2a2 |
+C
\int | x2 |
(ax+b)2 |
dx=
1 | |
a3 |
\left(ax-2bln\left|ax+b\right|-
b2 | |
ax+b |
\right)+C
\int | x2 |
(ax+b)3 |
dx=
1 | |
a3 |
\left(ln\left|ax+b\right|+
2b | |
ax+b |
-
b2 | |
2(ax+b)2 |
\right)+C
\int | x2 |
(ax+b)n |
dx=
1 | \left(- | |
a3 |
(ax+b)3-n | |
(n-3) |
+
2b(ax+b)2-n | |
(n-2) |
-
b2(ax+b)1-n | |
(n-1) |
\right)+C (forn\not\in\{1,2,3\})
\int | 1 |
x(ax+b) |
dx=-
1 | ln\left| | |
b |
ax+b | |
x |
\right|+C
\int | 1 |
x2(ax+b) |
dx=-
1 | |
bx |
+
a | ln\left| | |
b2 |
ax+b | |
x |
\right|+C
\int | 1 |
x2(ax+b)2 |
dx=-a\left(
1 | |
b2(ax+b) |
+
1 | |
ab2x |
-
2 | ln\left| | |
b3 |
ax+b | |
x |
\right|\right)+C
For
a ≠ 0:
\int | 1 |
ax2+bx+c |
dx= \begin{cases} \displaystyle
2 | |
\sqrt{4ac-b2 |
\int | x |
ax2+bx+c |
dx=
1 | |
2a |
| |||||
ln\left|ax | \int |
dx | |
ax2+bx+c |
+C
\int | mx+n |
ax2+bx+c |
dx=\begin{cases} \displaystyle
m | |
2a |
| ||||
ln\left|ax |
\int | 1 |
(ax2+bx+c)n |
dx=
2ax+b | + | |
(n-1)(4ac-b2)(ax2+bx+c)n-1 |
(2n-3)2a | \int | |
(n-1)(4ac-b2) |
1 | |
(ax2+bx+c)n-1 |
dx+C
\int | x |
(ax2+bx+c)n |
dx=-
bx+2c | - | |
(n-1)(4ac-b2)(ax2+bx+c)n-1 |
b(2n-3) | \int | |
(n-1)(4ac-b2) |
1 | |
(ax2+bx+c)n-1 |
dx+C
\int | 1 |
x(ax2+bx+c) |
dx=
1 | ln\left| | |
2c |
x2 | \right|- | |
ax2+bx+c |
b | \int | |
2c |
1 | |
ax2+bx+c |
dx+C
\intxm\left(a+bxn\right)pdx=
xm+1\left(a+bxn\right)p | |
m+np+1 |
+
anp | |
m+np+1 |
\intxm\left(a+bxn\right)p-1dx
\intxm\left(a+bxn\right)pdx=-
xm+1\left(a+bxn\right)p+1 | |
an(p+1) |
+
m+n(p+1)+1 | |
an(p+1) |
\intxm\left(a+bxn\right)p+1dx
\intxm\left(a+bxn\right)pdx=
xm+1\left(a+bxn\right)p | |
m+1 |
-
bnp | |
m+1 |
\intxm+n\left(a+bxn\right)p-1dx
\intxm\left(a+bxn\right)pdx=
xm-n+1\left(a+bxn\right)p+1 | |
bn(p+1) |
-
m-n+1 | |
bn(p+1) |
\intxm-n\left(a+bxn\right)p+1dx
\intxm\left(a+bxn\right)pdx=
xm-n+1\left(a+bxn\right)p+1 | |
b(m+np+1) |
-
a(m-n+1) | |
b(m+np+1) |
\intxm-n\left(a+bxn\right)pdx
\intxm\left(a+bxn\right)pdx=
xm+1\left(a+bxn\right)p+1 | |
a(m+1) |
-
b(m+n(p+1)+1) | |
a(m+1) |
\intxm+n\left(a+bxn\right)pdx
(a+bx)m(c+dx)n(e+fx)p
\begin{align} &\int(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx= -
(Ab-aB)(a+bx)m+1(c+dx)n(e+fx)p+1 | |
b(m+1)(af-be) |
+
1 | |
b(m+1)(af-be) |
⋅ \\ & \int(bc(m+1)(Af-Be)+(Ab-aB)(nde+cf(p+1))+d(b(m+1)(Af-Be)+f(n+p+1)(Ab-aB))x)(a+bx)m+1(c+dx)n-1(e+fx)pdx \end{align}
\begin{align} &\int(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=
B(a+bx)m(c+dx)n+1(e+fx)p+1 | |
df(m+n+p+2) |
+
1 | |
df(m+n+p+2) |
⋅ \\ & \int(Aadf(m+n+p+2)-B(bcem+a(de(n+1)+cf(p+1)))+(Abdf(m+n+p+2)+B(adfm-b(de(m+n+1)+cf(m+p+1))))x)(a+bx)m-1(c+dx)n(e+fx)pdx \end{align}
\begin{align} &\int(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=
(Ab-aB)(a+bx)m+1(c+dx)n+1(e+fx)p+1 | |
(m+1)(ad-bc)(af-be) |
+
1 | |
(m+1)(ad-bc)(af-be) |
⋅ \\ & \int((m+1)(A(adf-b(cf+de))+Bbce)-(Ab-aB)(de(n+1)+cf(p+1))-df(m+n+p+3)(Ab-aB)x)(a+bx)m+1(c+dx)n(e+fx)pdx \end{align}
\left(a+bxn\right)p\left(c+dxn\right)q
xm\left(a+bxn\right)p\left(c+dxn\right)q
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx= -
(Ab-aB)xm+1\left(a+bxn\right)p+1\left(c+dxn\right)q | |
abn(p+1) |
+
1 | |
abn(p+1) |
⋅ \\ & \intxm\left(c(Abn(p+1)+(Ab-aB)(m+1))+d(Abn(p+1)+(Ab-aB)(m+nq+1))xn\right)\left(a+bxn\right)p+1\left(c+dxn\right)q-1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=
Bxm+1\left(a+bxn\right)p+1\left(c+dxn\right)q | |
b(m+n(p+q+1)+1) |
+
1 | |
b(m+n(p+q+1)+1) |
⋅ \\ & \intxm\left(c((Ab-aB)(1+m)+Abn(1+p+q))+(d(Ab-aB)(1+m)+Bnq(bc-ad)+Abdn(1+p+q))xn\right)\left(a+bxn\right)p\left(c+dxn\right)q-1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx= -
(Ab-aB)xm+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1 | |
an(bc-ad)(p+1) |
+
1 | |
an(bc-ad)(p+1) |
⋅ \\ & \intxm\left(c(Ab-aB)(m+1)+An(bc-ad)(p+1)+d(Ab-aB)(m+n(p+q+2)+1)xn\right)\left(a+bxn\right)p+1\left(c+dxn\right)qdx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=
Bxm-n+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1 | |
bd(m+n(p+q+1)+1) |
-
1 | |
bd(m+n(p+q+1)+1) |
⋅ \\ & \intxm-n\left(aBc(m-n+1)+(aBd(m+nq+1)-b(-Bc(m+np+1)+Ad(m+n(p+q+1)+1)))xn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=
Axm+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1 | |
ac(m+1) |
+
1 | |
ac(m+1) |
⋅ \\ & \intxm+n\left(aBc(m+1)-A(bc+ad)(m+n+1)-An(bcp+adq)-Abd(m+n(p+q+2)+1)xn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=
Axm+1\left(a+bxn\right)p+1\left(c+dxn\right)q | |
a(m+1) |
-
1 | |
a(m+1) |
⋅ \\ & \intxm+n\left(c(Ab-aB)(m+1)+An(bc(p+1)+adq)+d((Ab-aB)(m+1)+Abn(p+q+1))xn\right)\left(a+bxn\right)p\left(c+dxn\right)q-1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=
(Ab-aB)xm-n+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1 | |
bn(bc-ad)(p+1) |
-
1 | |
bn(bc-ad)(p+1) |
⋅ \\ & \intxm-n\left(c(Ab-aB)(m-n+1)+(d(Ab-aB)(m+nq+1)-bn(Bc-Ad)(p+1))xn\right)\left(a+bxn\right)p+1\left(c+dxn\right)qdx \end{align}
\left(a+bx+cx2\right)p
b2-4ac=0
\int(d+ex)m\left(a+bx+cx2\right)pdx=
(d+ex)m+1\left(a+bx+cx2\right)p | |
e(m+1) |
-
p(d+ex)m+2(b+2cx)\left(a+bx+cx2\right)p-1 | |
e2(m+1)(m+2p+1) |
+
p(2p-1)(2cd-be) | |
e2(m+1)(m+2p+1) |
\int(d+ex)m+1\left(a+bx+cx2\right)p-1dx
\int(d+ex)m\left(a+bx+cx2\right)pdx=
(d+ex)m+1\left(a+bx+cx2\right)p | |
e(m+1) |
-
p(d+ex)m+2(b+2cx)\left(a+bx+cx2\right)p-1 | |
e2(m+1)(m+2) |
+
2cp(2p-1) | |
e2(m+1)(m+2) |
\int(d+ex)m+2\left(a+bx+cx2\right)p-1dx
\int(d+ex)m\left(a+bx+cx2\right)pdx= -
e(m+2p+2)(d+ex)m\left(a+bx+cx2\right)p+1 | |
(p+1)(2p+1)(2cd-be) |
+
(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p | |
(2p+1)(2cd-be) |
+
e2m(m+2p+2) | |
(p+1)(2p+1)(2cd-be) |
\int(d+ex)m-1\left(a+bx+cx2\right)p+1dx
\int(d+ex)m\left(a+bx+cx2\right)pdx= -
em(d+ex)m-1\left(a+bx+cx2\right)p+1 | |
2c(p+1)(2p+1) |
+
(d+ex)m(b+2cx)\left(a+bx+cx2\right)p | |
2c(2p+1) |
+
e2m(m-1) | |
2c(p+1)(2p+1) |
\int(d+ex)m-2\left(a+bx+cx2\right)p+1dx
\int(d+ex)m\left(a+bx+cx2\right)pdx=
(d+ex)m+1\left(a+bx+cx2\right)p | |
e(m+2p+1) |
-
p(2cd-be)(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p-1 | |
2ce2(m+2p)(m+2p+1) |
+
p(2p-1)(2cd-be)2 | |
2ce2(m+2p)(m+2p+1) |
\int(d+ex)m\left(a+bx+cx2\right)p-1dx
\int(d+ex)m\left(a+bx+cx2\right)pdx= -
2ce(m+2p+2)(d+ex)m+1\left(a+bx+cx2\right)p+1 | |
(p+1)(2p+1)(2cd-be)2 |
+
(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p | |
(2p+1)(2cd-be) |
+
2ce2(m+2p+2)(m+2p+3) | |
(p+1)(2p+1)(2cd-be)2 |
\int(d+ex)m\left(a+bx+cx2\right)p+1dx
\int(d+ex)m\left(a+bx+cx2\right)pdx=
(d+ex)m(b+2cx)\left(a+bx+cx2\right)p | |
2c(m+2p+1) |
+
m(2cd-be) | |
2c(m+2p+1) |
\int(d+ex)m-1\left(a+bx+cx2\right)pdx
\int(d+ex)m\left(a+bx+cx2\right)pdx= -
(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p | |
(m+1)(2cd-be) |
+
2c(m+2p+2) | |
(m+1)(2cd-be) |
\int(d+ex)m+1\left(a+bx+cx2\right)pdx
\left(a+bx+cx2\right)p
(d+ex)m\left(a+bx+cx2\right)p
\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=
(d+ex)m+1(Ae(m+2p+2)-Bd(2p+1)+eB(m+1)x)\left(a+bx+cx2\right)p | |
e2(m+1)(m+2p+2) |
+
1 | |
e2(m+1)(m+2p+2) |
p ⋅ \\ & \int(d+ex)m+1(B(bd+2ae+2aem+2bdp)-Abe(m+2p+2)+(B(2cd+be+bem+4cdp)-2Ace(m+2p+2))x)\left(a+bx+cx2\right)p-1dx \end{align}
\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=
(d+ex)m(Ab-2aB-(bB-2Ac)x)\left(a+bx+cx2\right)p+1 | |
(p+1)\left(b2-4ac\right) |
+
1 | |
(p+1)\left(b2-4ac\right) |
⋅ \\ & \int(d+ex)m-1(B(2aem+bd(2p+3))-A(bem+2cd(2p+3))+e(bB-2Ac)(m+2p+3)x)\left(a+bx+cx2\right)p+1dx \end{align}
\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=
(d+ex)m+1(Ace(m+2p+2)-B(cd+2cdp-bep)+Bce(m+2p+1)x)\left(a+bx+cx2\right)p | |
ce2(m+2p+1)(m+2p+2) |
-
p | |
ce2(m+2p+1)(m+2p+2) |
⋅ \\ & \int(d+ex)m(Ace(bd-2ae)(m+2p+2)+B(ae(be-2cdm+bem)+bd(bep-cd-2cdp))+\\ & \left(Ace(2cd-be)(m+2p+2)-B\left(-b2e2(m+p+1)+2c2d2(1+2p)+ce(bd(m-2p)+2ae(m+2p+1))\right)\right)x)\left(a+bx+cx2\right)p-1dx \end{align}
\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=
(d+ex)m+1\left(A\left(bcd-b2e+2ace\right)-aB(2cd-be)+c(A(2cd-be)-B(bd-2ae))x\right)\left(a+bx+cx2\right)p+1 | |
(p+1)\left(b2-4ac\right)\left(cd2-bde+ae2\right) |
+\\ &
1 | |
(p+1)\left(b2-4ac\right)\left(cd2-bde+ae2\right) |
⋅ \\ & \int(d+ex)m(A\left(bcde(2p-m+2)+b2e2(m+p+2)-2c2d2(3+2p)-2ace2(m+2p+3)\right)-\\ & B(ae(be-2cdm+bem)+bd(-3cd+be-2cdp+bep))+ce(B(bd-2ae)-A(2cd-be))(m+2p+4)x)\left(a+bx+cx2\right)p+1dx \end{align}
\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=
B(d+ex)m\left(a+bx+cx2\right)p+1 | |
c(m+2p+2) |
+
1 | |
c(m+2p+2) |
⋅ \\ & \int(d+ex)m-1(m(Acd-aBe)-d(bB-2Ac)(p+1)+((Bcd-bBe+Ace)m-e(bB-2Ac)(p+1))x)\left(a+bx+cx2\right)pdx \end{align}
\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx= -
(Bd-Ae)(d+ex)m+1\left(a+bx+cx2\right)p+1 | |
(m+1)\left(cd2-bde+ae2\right) |
+
1 | |
(m+1)\left(cd2-bde+ae2\right) |
⋅ \\ & \int(d+ex)m+1((Acd-Abe+aBe)(m+1)+b(Bd-Ae)(p+1)+c(Bd-Ae)(m+2p+3)x)\left(a+bx+cx2\right)pdx \end{align}
\left(a+bxn+cx2\right)p
b2-4ac=0
\intxm\left(a+bxn+cx2\right)pdx=
xm+1\left(a+bxn+cx2\right)p | |
m+2np+1 |
+
npxm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p-1 | |
(m+1)(m+2np+1) |
-
bn2p(2p-1) | |
(m+1)(m+2np+1) |
\intxm+n\left(a+bxn+cx2\right)p-1dx
\intxm\left(a+bxn+cx2\right)pdx=
(m+n(2p-1)+1)xm+1\left(a+bxn+cx2\right)p | |
(m+1)(m+n+1) |
+
npxm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p-1 | |
(m+1)(m+n+1) |
+
2cpn2(2p-1) | |
(m+1)(m+n+1) |
\intxm+2n\left(a+bxn+cx2\right)p-1dx
\intxm\left(a+bxn+cx2\right)pdx=
(m+n(2p+1)+1)xm-n+1\left(a+bxn+cx2\right)p+1 | |
bn2(p+1)(2p+1) |
-
xm+1\left(b+2cxn\right)\left(a+bxn+cx2\right)p | |
bn(2p+1) |
-
(m-n+1)(m+n(2p+1)+1) | |
bn2(p+1)(2p+1) |
\intxm-n\left(a+bxn+cx2\right)p+1dx
\intxm\left(a+bxn+cx2\right)pdx= -
(m-3n-2np+1)xm-2n+1\left(a+bxn+cx2\right)p+1 | |
2cn2(p+1)(2p+1) |
-
xm-2n+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p | |
2cn(2p+1) |
+
(m-n+1)(m-2n+1) | |
2cn2(p+1)(2p+1) |
\intxm-2n\left(a+bxn+cx2\right)p+1dx
\intxm\left(a+bxn+cx2\right)pdx=
xm+1\left(a+bxn+cx2\right)p | |
m+2np+1 |
+
npxm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p-1 | |
(m+2np+1)(m+n(2p-1)+1) |
+
2an2p(2p-1) | |
(m+2np+1)(m+n(2p-1)+1) |
\intxm\left(a+bxn+cx2\right)p-1dx
\intxm\left(a+bxn+cx2\right)pdx= -
(m+n+2np+1)xm+1\left(a+bxn+cx2\right)p+1 | |
2an2(p+1)(2p+1) |
-
xm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p | |
2an(2p+1) |
+
(m+n(2p+1)+1)(m+2n(p+1)+1) | |
2an2(p+1)(2p+1) |
\intxm\left(a+bxn+cx2\right)p+1dx
\intxm\left(a+bxn+cx2\right)pdx=
xm-n+1\left(b+2cxn\right)\left(a+bxn+cx2\right)p | |
2c(m+2np+1) |
-
b(m-n+1) | |
2c(m+2np+1) |
\intxm-n\left(a+bxn+cx2\right)pdx
\intxm\left(a+bxn+cx2\right)pdx=
xm+1\left(b+2cxn\right)\left(a+bxn+cx2\right)p | |
b(m+1) |
-
2c(m+n(2p+1)+1) | |
b(m+1) |
\intxm+n\left(a+bxn+cx2\right)pdx
\left(a+bxn+cx2\right)p
xm\left(a+bxn+cx2\right)p
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=
xm+1\left(A(m+n(2p+1)+1)+B(m+1)xn\right)\left(a+bxn+cx2\right)p | |
(m+1)(m+n(2p+1)+1) |
+
np | |
(m+1)(m+n(2p+1)+1) |
⋅ \\ & \intxm+n\left(2aB(m+1)-Ab(m+n(2p+1)+1)+(bB(m+1)-2Ac(m+n(2p+1)+1))xn\right)\left(a+bxn+cx2\right)p-1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=
xm-n+1\left(Ab-2aB-(bB-2Ac)xn\right)\left(a+bxn+cx2\right)p+1 | |
n(p+1)\left(b2-4ac\right) |
+
1 | |
n(p+1)\left(b2-4ac\right) |
⋅ \\ & \intxm-n\left((m-n+1)(2aB-Ab)+(m+2n(p+1)+1)(bB-2Ac)xn\right)\left(a+bxn+cx2\right)p+1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=
xm+1\left(bBnp+Ac(m+n(2p+1)+1)+Bc(m+2np+1)xn\right)\left(a+bxn+cx2\right)p | |
c(m+2np+1)(m+n(2p+1)+1) |
+
np | |
c(m+2np+1)(m+n(2p+1)+1) |
⋅ \\ & \intxm\left(2aAc(m+n(2p+1)+1)-abB(m+1)+\left(2aBc(m+2np+1)+Abc(m+n(2p+1)+1)-b2B(m+np+1)\right)xn\right)\left(a+bxn+cx2\right)p-1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx= -
xm+1\left(Ab2-abB-2aAc+(Ab-2aB)cxn\right)\left(a+bxn+cx2\right)p+1 | |
an(p+1)\left(b2-4ac\right) |
+
1 | |
an(p+1)\left(b2-4ac\right) |
⋅ \\ & \intxm\left((m+n(p+1)+1)Ab2-abB(m+1)-2(m+2n(p+1)+1)aAc+(m+n(2p+3)+1)(Ab-2aB)cxn\right)\left(a+bxn+cx2\right)p+1dx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=
Bxm-n+1\left(a+bxn+cx2\right)p+1 | |
c(m+n(2p+1)+1) |
-
1 | |
c(m+n(2p+1)+1) |
⋅ \\ & \intxm-n\left(aB(m-n+1)+(bB(m+np+1)-Ac(m+n(2p+1)+1))xn\right)\left(a+bxn+cx2\right)pdx \end{align}
\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=
Axm+1\left(a+bxn+cx2\right)p+1 | |
a(m+1) |
+
1 | |
a(m+1) |
⋅ \\ & \intxm+n\left(aB(m+1)-Ab(m+n(p+1)+1)-Ac(m+2n(p+1)+1)xn\right)\left(a+bxn+cx2\right)pdx \end{align}