List of integrals of rational functions explained

The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:which can then be integrated term by term.

For other types of functions, see lists of integrals.

Miscellaneous integrands

\intf'(x)
f(x)

dx=ln\left|f(x)\right|+C

\int1
x2+a2

dx=

1\arctan
a
x
a

+C

\int1
x2-a2

dx=

1ln\left|
2a
x-a
x+a

\right|+C=\begin{cases}\displaystyle-

1\operatorname{artanh}
a
x
a

+C=

1ln
2a
a-x
a+x

+C&(for|x|<|a|)\\[12pt]\displaystyle-

1\operatorname{arcoth}
a
x
a

+C=

1ln
2a
x-a
x+a

+C&(for|x|>|a|)\end{cases}

\int1
a2-x2

dx=

1ln\left|
2a
a+x
a-x

\right|+C=\begin{cases}\displaystyle

1\operatorname{artanh}
a
x
a

+C=

1ln
2a
a+x
a-x

+C&(for|x|<|a|)\\[12pt]\displaystyle

1\operatorname{arcoth}
a
x
a

+C=

1ln
2a
x+a
x-a

+C&(for|x|>|a|)\end{cases}

\int

dx
2n
x+1

=

1
2n-1
2n-1
\sum
k=1

\sin\left(

2k-1
2n

\pi\right)\arctan\left[\left(x-\cos\left(

2k-1
2n

\pi\right)\right)\csc\left(

2k-1
2n

\pi\right)\right]-

1
2

\cos\left(

2k-1
2n

\pi\right)ln\left|x2-2x\cos\left(

2k-1
2n

\pi\right)+1\right|+C

Integrands of the form xm(a x + b)n

Many of the following antiderivatives have a term of the form ln |ax + b|. Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function.[1] However, it is conventional to omit this from the notation. For example,\int\frac \, dx= \begin\dfrac\ln(-(ax + b)) + C^- & ax+b<0 \\\dfrac\ln(ax + b) + C^+ & ax+b>0\endis usually abbreviated as\int\frac \, dx= \frac\ln\left|ax + b\right| + C,where C is to be understood as notation for a locally constant function of x. This convention will be adhered to in the following.

\int(ax+b)ndx=

(ax+b)n+1
a(n+1)

+C    (forn-1)

(Cavalieri's quadrature formula)
\intx
ax+b

dx=

x
a

-

b
a2

ln\left|ax+b\right|+C

\intmx+n
ax+b

dx=

m
a

x+

an-bm
a2

ln\left|ax+b\right|+C

\intx
(ax+b)2

dx=

b
a2(ax+b)

+

1
a2

ln\left|ax+b\right|+C

\intx
(ax+b)n

dx=

a(1-n)x-b
a2(n-1)(n-2)(ax+b)n-1

+C    (forn\not\in\{1,2\})

\intx(ax+b)ndx=

a(n+1)x-b
a2(n+1)(n+2)

(ax+b)n+1+C    (forn\not\in\{-1,-2\})

\intx2
ax+b

dx=

b2ln(\left|ax+b\right|)+
a3
ax2-2bx
2a2

+C

\intx2
(ax+b)2

dx=

1
a3

\left(ax-2bln\left|ax+b\right|-

b2
ax+b

\right)+C

\intx2
(ax+b)3

dx=

1
a3

\left(ln\left|ax+b\right|+

2b
ax+b

-

b2
2(ax+b)2

\right)+C

\intx2
(ax+b)n

dx=

1\left(-
a3
(ax+b)3-n
(n-3)

+

2b(ax+b)2-n
(n-2)

-

b2(ax+b)1-n
(n-1)

\right)+C    (forn\not\in\{1,2,3\})

\int1
x(ax+b)

dx=-

1ln\left|
b
ax+b
x

\right|+C

\int1
x2(ax+b)

dx=-

1
bx

+

aln\left|
b2
ax+b
x

\right|+C

\int1
x2(ax+b)2

dx=-a\left(

1
b2(ax+b)

+

1
ab2x

-

2ln\left|
b3
ax+b
x

\right|\right)+C

Integrands of the form xm / (a x2 + b x + c)n

For

a0:

\int1
ax2+bx+c

dx= \begin{cases} \displaystyle

2
\sqrt{4ac-b2
}\arctan\frac + C & \text4ac-b^2>0\mbox \\[12pt]\displaystyle \frac\ln\left|\frac\right| + C =\begin\displaystyle -\frac\,\operatorname\frac + C &\text|2ax+b|<\sqrt\mbox \\[6pt]\displaystyle -\frac\,\operatorname\frac + C &\text\end & \text4ac-b^2<0\mbox \\[12pt]\displaystyle -\frac + C & \text4ac-b^2=0\mbox\end
\intx
ax2+bx+c

dx=

1
2a
2+bx+c\right|-b
2a
ln\left|ax\int
dx
ax2+bx+c

+C

\intmx+n
ax2+bx+c

dx=\begin{cases} \displaystyle

m
2a
2+bx+c\right|+2an-bm
a\sqrt{4ac-b2
ln\left|ax
}\arctan\frac + C &\text4ac-b^2>0\mbox \\[12pt] \displaystyle \frac\ln\left|ax^2+bx+c\right|+\frac\ln\left|\frac\right| + C =\begin\displaystyle \frac\ln\left|ax^2+bx+c\right|-\frac\,\operatorname\frac + C &\text|2ax+b|<\sqrt\mbox \\[6pt]\displaystyle \frac\ln\left|ax^2+bx+c\right|-\frac\,\operatorname\frac + C &\text\end & \text4ac-b^2<0\mbox \\[12pt]\displaystyle \frac\ln\left|ax^2+bx+c\right|-\frac + C = \frac\ln\left|x+\frac\right|-\frac + C &\text4ac-b^2=0\mbox\end
\int1
(ax2+bx+c)n

dx=

2ax+b+
(n-1)(4ac-b2)(ax2+bx+c)n-1
(2n-3)2a\int
(n-1)(4ac-b2)
1
(ax2+bx+c)n-1

dx+C

\intx
(ax2+bx+c)n

dx=-

bx+2c-
(n-1)(4ac-b2)(ax2+bx+c)n-1
b(2n-3)\int
(n-1)(4ac-b2)
1
(ax2+bx+c)n-1

dx+C

\int1
x(ax2+bx+c)

dx=

1ln\left|
2c
x2\right|-
ax2+bx+c
b\int
2c
1
ax2+bx+c

dx+C

Integrands of the form xm (a + b xn)p

\intxm\left(a+bxn\right)pdx=

xm+1\left(a+bxn\right)p
m+np+1

+

anp
m+np+1

\intxm\left(a+bxn\right)p-1dx

\intxm\left(a+bxn\right)pdx=-

xm+1\left(a+bxn\right)p+1
an(p+1)

+

m+n(p+1)+1
an(p+1)

\intxm\left(a+bxn\right)p+1dx

\intxm\left(a+bxn\right)pdx=

xm+1\left(a+bxn\right)p
m+1

-

bnp
m+1

\intxm+n\left(a+bxn\right)p-1dx

\intxm\left(a+bxn\right)pdx=

xm-n+1\left(a+bxn\right)p+1
bn(p+1)

-

m-n+1
bn(p+1)

\intxm-n\left(a+bxn\right)p+1dx

\intxm\left(a+bxn\right)pdx=

xm-n+1\left(a+bxn\right)p+1
b(m+np+1)

-

a(m-n+1)
b(m+np+1)

\intxm-n\left(a+bxn\right)pdx

\intxm\left(a+bxn\right)pdx=

xm+1\left(a+bxn\right)p+1
a(m+1)

-

b(m+n(p+1)+1)
a(m+1)

\intxm+n\left(a+bxn\right)pdx

Integrands of the form (A + B x) (a + b x)m (c + d x)n (e + f x)p

(a+bx)m(c+dx)n(e+fx)p

by setting B to 0.

\begin{align} &\int(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx= -

(Ab-aB)(a+bx)m+1(c+dx)n(e+fx)p+1
b(m+1)(af-be)

+

1
b(m+1)(af-be)

\\ &    \int(bc(m+1)(Af-Be)+(Ab-aB)(nde+cf(p+1))+d(b(m+1)(Af-Be)+f(n+p+1)(Ab-aB))x)(a+bx)m+1(c+dx)n-1(e+fx)pdx \end{align}

\begin{align} &\int(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=

B(a+bx)m(c+dx)n+1(e+fx)p+1
df(m+n+p+2)

+

1
df(m+n+p+2)

\\ &    \int(Aadf(m+n+p+2)-B(bcem+a(de(n+1)+cf(p+1)))+(Abdf(m+n+p+2)+B(adfm-b(de(m+n+1)+cf(m+p+1))))x)(a+bx)m-1(c+dx)n(e+fx)pdx \end{align}

\begin{align} &\int(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=

(Ab-aB)(a+bx)m+1(c+dx)n+1(e+fx)p+1
(m+1)(ad-bc)(af-be)

+

1
(m+1)(ad-bc)(af-be)

\\ &    \int((m+1)(A(adf-b(cf+de))+Bbce)-(Ab-aB)(de(n+1)+cf(p+1))-df(m+n+p+3)(Ab-aB)x)(a+bx)m+1(c+dx)n(e+fx)pdx \end{align}

Integrands of the form xm (A + B xn) (a + b xn)p (c + d xn)q

\left(a+bxn\right)p\left(c+dxn\right)q

and

xm\left(a+bxn\right)p\left(c+dxn\right)q

by setting m and/or B to 0.

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx= -

(Ab-aB)xm+1\left(a+bxn\right)p+1\left(c+dxn\right)q
abn(p+1)

+

1
abn(p+1)

\\ &    \intxm\left(c(Abn(p+1)+(Ab-aB)(m+1))+d(Abn(p+1)+(Ab-aB)(m+nq+1))xn\right)\left(a+bxn\right)p+1\left(c+dxn\right)q-1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=

Bxm+1\left(a+bxn\right)p+1\left(c+dxn\right)q
b(m+n(p+q+1)+1)

+

1
b(m+n(p+q+1)+1)

\\ &    \intxm\left(c((Ab-aB)(1+m)+Abn(1+p+q))+(d(Ab-aB)(1+m)+Bnq(bc-ad)+Abdn(1+p+q))xn\right)\left(a+bxn\right)p\left(c+dxn\right)q-1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx= -

(Ab-aB)xm+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1
an(bc-ad)(p+1)

+

1
an(bc-ad)(p+1)

\\ &    \intxm\left(c(Ab-aB)(m+1)+An(bc-ad)(p+1)+d(Ab-aB)(m+n(p+q+2)+1)xn\right)\left(a+bxn\right)p+1\left(c+dxn\right)qdx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=

Bxm-n+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1
bd(m+n(p+q+1)+1)

-

1
bd(m+n(p+q+1)+1)

\\ &    \intxm-n\left(aBc(m-n+1)+(aBd(m+nq+1)-b(-Bc(m+np+1)+Ad(m+n(p+q+1)+1)))xn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=

Axm+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1
ac(m+1)

+

1
ac(m+1)

\\ &    \intxm+n\left(aBc(m+1)-A(bc+ad)(m+n+1)-An(bcp+adq)-Abd(m+n(p+q+2)+1)xn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=

Axm+1\left(a+bxn\right)p+1\left(c+dxn\right)q
a(m+1)

-

1
a(m+1)

\\ &    \intxm+n\left(c(Ab-aB)(m+1)+An(bc(p+1)+adq)+d((Ab-aB)(m+1)+Abn(p+q+1))xn\right)\left(a+bxn\right)p\left(c+dxn\right)q-1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn\right)p\left(c+dxn\right)qdx=

(Ab-aB)xm-n+1\left(a+bxn\right)p+1\left(c+dxn\right)q+1
bn(bc-ad)(p+1)

-

1
bn(bc-ad)(p+1)

\\ &    \intxm-n\left(c(Ab-aB)(m-n+1)+(d(Ab-aB)(m+nq+1)-bn(Bc-Ad)(p+1))xn\right)\left(a+bxn\right)p+1\left(c+dxn\right)qdx \end{align}

Integrands of the form (d + e x)m (a + b x + c x2)p when b2 − 4 a c = 0

\left(a+bx+cx2\right)p

when

b2-4ac=0

by setting m to 0.

\int(d+ex)m\left(a+bx+cx2\right)pdx=

(d+ex)m+1\left(a+bx+cx2\right)p
e(m+1)

-

p(d+ex)m+2(b+2cx)\left(a+bx+cx2\right)p-1
e2(m+1)(m+2p+1)

+

p(2p-1)(2cd-be)
e2(m+1)(m+2p+1)

\int(d+ex)m+1\left(a+bx+cx2\right)p-1dx

\int(d+ex)m\left(a+bx+cx2\right)pdx=

(d+ex)m+1\left(a+bx+cx2\right)p
e(m+1)

-

p(d+ex)m+2(b+2cx)\left(a+bx+cx2\right)p-1
e2(m+1)(m+2)

+

2cp(2p-1)
e2(m+1)(m+2)

\int(d+ex)m+2\left(a+bx+cx2\right)p-1dx

\int(d+ex)m\left(a+bx+cx2\right)pdx= -

e(m+2p+2)(d+ex)m\left(a+bx+cx2\right)p+1
(p+1)(2p+1)(2cd-be)

+

(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p
(2p+1)(2cd-be)

+

e2m(m+2p+2)
(p+1)(2p+1)(2cd-be)

\int(d+ex)m-1\left(a+bx+cx2\right)p+1dx

\int(d+ex)m\left(a+bx+cx2\right)pdx= -

em(d+ex)m-1\left(a+bx+cx2\right)p+1
2c(p+1)(2p+1)

+

(d+ex)m(b+2cx)\left(a+bx+cx2\right)p
2c(2p+1)

+

e2m(m-1)
2c(p+1)(2p+1)

\int(d+ex)m-2\left(a+bx+cx2\right)p+1dx

\int(d+ex)m\left(a+bx+cx2\right)pdx=

(d+ex)m+1\left(a+bx+cx2\right)p
e(m+2p+1)

-

p(2cd-be)(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p-1
2ce2(m+2p)(m+2p+1)

+

p(2p-1)(2cd-be)2
2ce2(m+2p)(m+2p+1)

\int(d+ex)m\left(a+bx+cx2\right)p-1dx

\int(d+ex)m\left(a+bx+cx2\right)pdx= -

2ce(m+2p+2)(d+ex)m+1\left(a+bx+cx2\right)p+1
(p+1)(2p+1)(2cd-be)2

+

(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p
(2p+1)(2cd-be)

+

2ce2(m+2p+2)(m+2p+3)
(p+1)(2p+1)(2cd-be)2

\int(d+ex)m\left(a+bx+cx2\right)p+1dx

\int(d+ex)m\left(a+bx+cx2\right)pdx=

(d+ex)m(b+2cx)\left(a+bx+cx2\right)p
2c(m+2p+1)

+

m(2cd-be)
2c(m+2p+1)

\int(d+ex)m-1\left(a+bx+cx2\right)pdx

\int(d+ex)m\left(a+bx+cx2\right)pdx= -

(d+ex)m+1(b+2cx)\left(a+bx+cx2\right)p
(m+1)(2cd-be)

+

2c(m+2p+2)
(m+1)(2cd-be)

\int(d+ex)m+1\left(a+bx+cx2\right)pdx

Integrands of the form (d + e x)m (A + B x) (a + b x + c x2)p

\left(a+bx+cx2\right)p

and

(d+ex)m\left(a+bx+cx2\right)p

by setting m and/or B to 0.

\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=

(d+ex)m+1(Ae(m+2p+2)-Bd(2p+1)+eB(m+1)x)\left(a+bx+cx2\right)p
e2(m+1)(m+2p+2)

+

1
e2(m+1)(m+2p+2)

p\\ &    \int(d+ex)m+1(B(bd+2ae+2aem+2bdp)-Abe(m+2p+2)+(B(2cd+be+bem+4cdp)-2Ace(m+2p+2))x)\left(a+bx+cx2\right)p-1dx \end{align}

\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=

(d+ex)m(Ab-2aB-(bB-2Ac)x)\left(a+bx+cx2\right)p+1
(p+1)\left(b2-4ac\right)

+

1
(p+1)\left(b2-4ac\right)

\\ &    \int(d+ex)m-1(B(2aem+bd(2p+3))-A(bem+2cd(2p+3))+e(bB-2Ac)(m+2p+3)x)\left(a+bx+cx2\right)p+1dx \end{align}

\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=

(d+ex)m+1(Ace(m+2p+2)-B(cd+2cdp-bep)+Bce(m+2p+1)x)\left(a+bx+cx2\right)p
ce2(m+2p+1)(m+2p+2)

-

p
ce2(m+2p+1)(m+2p+2)

\\ &    \int(d+ex)m(Ace(bd-2ae)(m+2p+2)+B(ae(be-2cdm+bem)+bd(bep-cd-2cdp))+\\ &       \left(Ace(2cd-be)(m+2p+2)-B\left(-b2e2(m+p+1)+2c2d2(1+2p)+ce(bd(m-2p)+2ae(m+2p+1))\right)\right)x)\left(a+bx+cx2\right)p-1dx \end{align}

\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=

(d+ex)m+1\left(A\left(bcd-b2e+2ace\right)-aB(2cd-be)+c(A(2cd-be)-B(bd-2ae))x\right)\left(a+bx+cx2\right)p+1
(p+1)\left(b2-4ac\right)\left(cd2-bde+ae2\right)

+\\ &   

1
(p+1)\left(b2-4ac\right)\left(cd2-bde+ae2\right)

\\ &       \int(d+ex)m(A\left(bcde(2p-m+2)+b2e2(m+p+2)-2c2d2(3+2p)-2ace2(m+2p+3)\right)-\\ &          B(ae(be-2cdm+bem)+bd(-3cd+be-2cdp+bep))+ce(B(bd-2ae)-A(2cd-be))(m+2p+4)x)\left(a+bx+cx2\right)p+1dx \end{align}

\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx=

B(d+ex)m\left(a+bx+cx2\right)p+1
c(m+2p+2)

+

1
c(m+2p+2)

\\ &    \int(d+ex)m-1(m(Acd-aBe)-d(bB-2Ac)(p+1)+((Bcd-bBe+Ace)m-e(bB-2Ac)(p+1))x)\left(a+bx+cx2\right)pdx \end{align}

\begin{align} &\int(d+ex)m(A+Bx)\left(a+bx+cx2\right)pdx= -

(Bd-Ae)(d+ex)m+1\left(a+bx+cx2\right)p+1
(m+1)\left(cd2-bde+ae2\right)

+

1
(m+1)\left(cd2-bde+ae2\right)

\\ &    \int(d+ex)m+1((Acd-Abe+aBe)(m+1)+b(Bd-Ae)(p+1)+c(Bd-Ae)(m+2p+3)x)\left(a+bx+cx2\right)pdx \end{align}

Integrands of the form xm (a + b xn + c x2n)p when b2 − 4 a c = 0

\left(a+bxn+cx2\right)p

when

b2-4ac=0

by setting m to 0.

\intxm\left(a+bxn+cx2\right)pdx=

xm+1\left(a+bxn+cx2\right)p
m+2np+1

+

npxm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p-1
(m+1)(m+2np+1)

-

bn2p(2p-1)
(m+1)(m+2np+1)

\intxm+n\left(a+bxn+cx2\right)p-1dx

\intxm\left(a+bxn+cx2\right)pdx=

(m+n(2p-1)+1)xm+1\left(a+bxn+cx2\right)p
(m+1)(m+n+1)

+

npxm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p-1
(m+1)(m+n+1)

+

2cpn2(2p-1)
(m+1)(m+n+1)

\intxm+2n\left(a+bxn+cx2\right)p-1dx

\intxm\left(a+bxn+cx2\right)pdx=

(m+n(2p+1)+1)xm-n+1\left(a+bxn+cx2\right)p+1
bn2(p+1)(2p+1)

-

xm+1\left(b+2cxn\right)\left(a+bxn+cx2\right)p
bn(2p+1)

-

(m-n+1)(m+n(2p+1)+1)
bn2(p+1)(2p+1)

\intxm-n\left(a+bxn+cx2\right)p+1dx

\intxm\left(a+bxn+cx2\right)pdx= -

(m-3n-2np+1)xm-2n+1\left(a+bxn+cx2\right)p+1
2cn2(p+1)(2p+1)

-

xm-2n+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p
2cn(2p+1)

+

(m-n+1)(m-2n+1)
2cn2(p+1)(2p+1)

\intxm-2n\left(a+bxn+cx2\right)p+1dx

\intxm\left(a+bxn+cx2\right)pdx=

xm+1\left(a+bxn+cx2\right)p
m+2np+1

+

npxm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p-1
(m+2np+1)(m+n(2p-1)+1)

+

2an2p(2p-1)
(m+2np+1)(m+n(2p-1)+1)

\intxm\left(a+bxn+cx2\right)p-1dx

\intxm\left(a+bxn+cx2\right)pdx= -

(m+n+2np+1)xm+1\left(a+bxn+cx2\right)p+1
2an2(p+1)(2p+1)

-

xm+1\left(2a+bxn\right)\left(a+bxn+cx2\right)p
2an(2p+1)

+

(m+n(2p+1)+1)(m+2n(p+1)+1)
2an2(p+1)(2p+1)

\intxm\left(a+bxn+cx2\right)p+1dx

\intxm\left(a+bxn+cx2\right)pdx=

xm-n+1\left(b+2cxn\right)\left(a+bxn+cx2\right)p
2c(m+2np+1)

-

b(m-n+1)
2c(m+2np+1)

\intxm-n\left(a+bxn+cx2\right)pdx

\intxm\left(a+bxn+cx2\right)pdx=

xm+1\left(b+2cxn\right)\left(a+bxn+cx2\right)p
b(m+1)

-

2c(m+n(2p+1)+1)
b(m+1)

\intxm+n\left(a+bxn+cx2\right)pdx

Integrands of the form xm (A + B xn) (a + b xn + c x2n)p

\left(a+bxn+cx2\right)p

and

xm\left(a+bxn+cx2\right)p

by setting m and/or B to 0.

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=

xm+1\left(A(m+n(2p+1)+1)+B(m+1)xn\right)\left(a+bxn+cx2\right)p
(m+1)(m+n(2p+1)+1)

+

np
(m+1)(m+n(2p+1)+1)

\\ &    \intxm+n\left(2aB(m+1)-Ab(m+n(2p+1)+1)+(bB(m+1)-2Ac(m+n(2p+1)+1))xn\right)\left(a+bxn+cx2\right)p-1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=

xm-n+1\left(Ab-2aB-(bB-2Ac)xn\right)\left(a+bxn+cx2\right)p+1
n(p+1)\left(b2-4ac\right)

+

1
n(p+1)\left(b2-4ac\right)

\\ &    \intxm-n\left((m-n+1)(2aB-Ab)+(m+2n(p+1)+1)(bB-2Ac)xn\right)\left(a+bxn+cx2\right)p+1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=

xm+1\left(bBnp+Ac(m+n(2p+1)+1)+Bc(m+2np+1)xn\right)\left(a+bxn+cx2\right)p
c(m+2np+1)(m+n(2p+1)+1)

+

np
c(m+2np+1)(m+n(2p+1)+1)

\\ &    \intxm\left(2aAc(m+n(2p+1)+1)-abB(m+1)+\left(2aBc(m+2np+1)+Abc(m+n(2p+1)+1)-b2B(m+np+1)\right)xn\right)\left(a+bxn+cx2\right)p-1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx= -

xm+1\left(Ab2-abB-2aAc+(Ab-2aB)cxn\right)\left(a+bxn+cx2\right)p+1
an(p+1)\left(b2-4ac\right)

+

1
an(p+1)\left(b2-4ac\right)

\\ &    \intxm\left((m+n(p+1)+1)Ab2-abB(m+1)-2(m+2n(p+1)+1)aAc+(m+n(2p+3)+1)(Ab-2aB)cxn\right)\left(a+bxn+cx2\right)p+1dx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=

Bxm-n+1\left(a+bxn+cx2\right)p+1
c(m+n(2p+1)+1)

-

1
c(m+n(2p+1)+1)

\\ &    \intxm-n\left(aB(m-n+1)+(bB(m+np+1)-Ac(m+n(2p+1)+1))xn\right)\left(a+bxn+cx2\right)pdx \end{align}

\begin{align} &\intxm\left(A+Bxn\right)\left(a+bxn+cx2\right)pdx=

Axm+1\left(a+bxn+cx2\right)p+1
a(m+1)

+

1
a(m+1)

\\ &    \intxm+n\left(aB(m+1)-Ab(m+n(p+1)+1)-Ac(m+2n(p+1)+1)xn\right)\left(a+bxn+cx2\right)pdx \end{align}

Notes and References

  1. "Reader Survey: log|x| + C", Tom Leinster, The n-category Café, March 19, 2012