List of integrals of hyperbolic functions explained

The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals.

In all formulas the constant a is assumed to be nonzero, and Cdenotes the constant of integration.

Integrals involving only hyperbolic sine functions

\int\sinhaxdx=

1
a

\coshax+C

\int\sinh2axdx=

1
4a

\sinh2ax-

x
2

+C

\int\sinhnaxdx=\begin{cases}

1
an

(\sinhn-1ax)(\coshax)-

n-1
n

\displaystyle\int\sinhn-2axdx,&n>0\\

1
a(n+1)

(\sinhn+1ax)(\coshax)-

n+2
n+1

\displaystyle\int\sinhn+2axdx,&n<0,n-1 \end{cases}

\begin{align} \int

dx
\sinhax

&=

1ln\left|\tanh
a
ax
2

\right|+C\\ &=

1ln\left|
a
\coshax+1
\sinhax

\right|+C\\ &=

1ln\left|
a
\sinhax
\coshax+1

\right|+C\\ &=

1ln\left|
2a
\coshax-1
\coshax+1

\right|+C \end{align}

\intdx
\sinhnax

=-

\coshax-
a(n-1)\sinhn-1ax
n-2\int
n-1
dx
\sinhn-2ax

   (forn1)

\intx\sinhaxdx=

1
a

x\coshax-

1
a2

\sinhax+C

\int(\sinhax)(\sinhbx)dx=

1
a2-b2

(a(\sinhbx)(\coshax)-b(\coshbx)(\sinhax))+C    (fora2 ≠ b2)

Integrals involving only hyperbolic cosine functions

\int\coshaxdx=

1
a

\sinhax+C

\int\cosh2axdx=

1
4a

\sinh2ax+

x
2

+C

\int\coshnaxdx=\begin{cases}

1
an

(\sinhax)(\coshn-1ax)+

n-1
n

\displaystyle\int\coshn-2axdx,&n>0\\ -

1
a(n+1)

(\sinhax)(\coshn+1ax)+

n+2
n+1

\displaystyle\int\coshn+2axdx,&n<0,n-1 \end{cases}

\begin{align} \int

dx
\coshax

&=

2
a

\arctaneax+C\\ &=

1
a

\arctan(\sinhax)+C \end{align}

\intdx
\coshnax

=

\sinhax+
a(n-1)\coshn-1ax
n-2\int
n-1
dx
\coshn-2ax

   (forn1)

\intx\coshaxdx=

1
a

x\sinhax-

1
a2

\coshax+C

\intx2\coshaxdx=-

2x\coshax
a2

+\left(

x2+
a
2
a3

\right)\sinhax+C

\int(\coshax)(\coshbx)dx=

1
a2-b2

(a(\sinhax)(\coshbx)-b(\sinhbx)(\coshax))+C    (fora2 ≠ b2)

\int

dx
1+\cosh(ax)

=

2
a
1
1+e-ax

+C

or
2
a
times The Logistic Function

Other integrals

Integrals of hyperbolic tangent, cotangent, secant, cosecant functions

\int\tanhxdx=ln\coshx+C

\int\tanh2axdx=x-

\tanhax
a

+C

\int\tanhnaxdx=-

1
a(n-1)

\tanhn-1ax+\int\tanhn-2axdx    (forn1)

\int\cothxdx=ln|\sinhx|+C,forx0

\int\cothnaxdx=-

1
a(n-1)

\cothn-1ax+\int\cothn-2axdx    (forn1)

\int\operatorname{sech}xdx=\arctan(\sinhx)+C

\int\operatorname{csch}xdx=ln\left|\tanh{x\over2}\right|+C=ln\left|\coth{x}-\operatorname{csch}{x}\right|+C,forx0

Integrals involving hyperbolic sine and cosine functions

\int(\coshax)(\sinhbx)dx=

1
a2-b2

(a(\sinhax)(\sinhbx)-b(\coshax)(\coshbx))+C    (fora2 ≠ b2)

\begin{align} \int

\coshnax
\sinhmax

dx&=

\coshn-1ax
a(n-m)\sinhm-1ax

+

n-1\int
n-m
\coshn-2ax
\sinhmax

dx    (formn)\\ &=-

\coshn+1ax
a(m-1)\sinhm-1ax

+

n-m+2\int
m-1
\coshnax
\sinhm-2ax

dx    (form1)\\ &=-

\coshn-1ax
a(m-1)\sinhm-1ax

+

n-1\int
m-1
\coshn-2ax
\sinhm-2ax

dx    (form1) \end{align}

\begin{align} \int

\sinhmax
\coshnax

dx&=

\sinhm-1ax
a(m-n)\coshn-1ax

+

m-1\int
n-m
\sinhm-2ax
\coshnax

dx    (formn)\\ &=

\sinhm+1ax
a(n-1)\coshn-1ax

+

m-n+2\int
n-1
\sinhmax
\coshn-2ax

dx    (forn1)\\ &=-

\sinhm-1ax
a(n-1)\coshn-1ax

+

m-1\int
n-1
\sinhmax
\coshn-2ax

dx    (forn1) \end{align}

Integrals involving hyperbolic and trigonometric functions

\int\sinh(ax+b)\sin(cx+d)dx=

a\cosh(ax+b)\sin(cx+d)-
a2+c2
c
a2+c2

\sinh(ax+b)\cos(cx+d)+C

\int\sinh(ax+b)\cos(cx+d)dx=

a\cosh(ax+b)\cos(cx+d)+
a2+c2
c
a2+c2

\sinh(ax+b)\sin(cx+d)+C

\int\cosh(ax+b)\sin(cx+d)dx=

a\sinh(ax+b)\sin(cx+d)-
a2+c2
c
a2+c2

\cosh(ax+b)\cos(cx+d)+C

\int\cosh(ax+b)\cos(cx+d)dx=

a\sinh(ax+b)\cos(cx+d)+
a2+c2
c
a2+c2

\cosh(ax+b)\sin(cx+d)+C