The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals.
In all formulas the constant a is assumed to be nonzero, and Cdenotes the constant of integration.
\int\sinhaxdx=
1 | |
a |
\coshax+C
\int\sinh2axdx=
1 | |
4a |
\sinh2ax-
x | |
2 |
+C
\int\sinhnaxdx=\begin{cases}
1 | |
an |
(\sinhn-1ax)(\coshax)-
n-1 | |
n |
\displaystyle\int\sinhn-2axdx,&n>0\\
1 | |
a(n+1) |
(\sinhn+1ax)(\coshax)-
n+2 | |
n+1 |
\displaystyle\int\sinhn+2axdx,&n<0,n ≠ -1 \end{cases}
\begin{align} \int
dx | |
\sinhax |
&=
1 | ln\left|\tanh | |
a |
ax | |
2 |
\right|+C\\ &=
1 | ln\left| | |
a |
\coshax+1 | |
\sinhax |
\right|+C\\ &=
1 | ln\left| | |
a |
\sinhax | |
\coshax+1 |
\right|+C\\ &=
1 | ln\left| | |
2a |
\coshax-1 | |
\coshax+1 |
\right|+C \end{align}
\int | dx |
\sinhnax |
=-
\coshax | - | |
a(n-1)\sinhn-1ax |
n-2 | \int | |
n-1 |
dx | |
\sinhn-2ax |
(forn ≠ 1)
\intx\sinhaxdx=
1 | |
a |
x\coshax-
1 | |
a2 |
\sinhax+C
\int(\sinhax)(\sinhbx)dx=
1 | |
a2-b2 |
(a(\sinhbx)(\coshax)-b(\coshbx)(\sinhax))+C (fora2 ≠ b2)
\int\coshaxdx=
1 | |
a |
\sinhax+C
\int\cosh2axdx=
1 | |
4a |
\sinh2ax+
x | |
2 |
+C
\int\coshnaxdx=\begin{cases}
1 | |
an |
(\sinhax)(\coshn-1ax)+
n-1 | |
n |
\displaystyle\int\coshn-2axdx,&n>0\\ -
1 | |
a(n+1) |
(\sinhax)(\coshn+1ax)+
n+2 | |
n+1 |
\displaystyle\int\coshn+2axdx,&n<0,n ≠ -1 \end{cases}
\begin{align} \int
dx | |
\coshax |
&=
2 | |
a |
\arctaneax+C\\ &=
1 | |
a |
\arctan(\sinhax)+C \end{align}
\int | dx |
\coshnax |
=
\sinhax | + | |
a(n-1)\coshn-1ax |
n-2 | \int | |
n-1 |
dx | |
\coshn-2ax |
(forn ≠ 1)
\intx\coshaxdx=
1 | |
a |
x\sinhax-
1 | |
a2 |
\coshax+C
\intx2\coshaxdx=-
2x\coshax | |
a2 |
+\left(
x2 | + | |
a |
2 | |
a3 |
\right)\sinhax+C
\int(\coshax)(\coshbx)dx=
1 | |
a2-b2 |
(a(\sinhax)(\coshbx)-b(\sinhbx)(\coshax))+C (fora2 ≠ b2)
\int
dx | |
1+\cosh(ax) |
=
2 | |
a |
1 | |
1+e-ax |
+C
2 | |
a |
\int\tanhxdx=ln\coshx+C
\int\tanh2axdx=x-
\tanhax | |
a |
+C
\int\tanhnaxdx=-
1 | |
a(n-1) |
\tanhn-1ax+\int\tanhn-2axdx (forn ≠ 1)
\int\cothxdx=ln|\sinhx|+C,forx ≠ 0
\int\cothnaxdx=-
1 | |
a(n-1) |
\cothn-1ax+\int\cothn-2axdx (forn ≠ 1)
\int\operatorname{sech}xdx=\arctan(\sinhx)+C
\int\operatorname{csch}xdx=ln\left|\tanh{x\over2}\right|+C=ln\left|\coth{x}-\operatorname{csch}{x}\right|+C,forx ≠ 0
\int(\coshax)(\sinhbx)dx=
1 | |
a2-b2 |
(a(\sinhax)(\sinhbx)-b(\coshax)(\coshbx))+C (fora2 ≠ b2)
\begin{align} \int
\coshnax | |
\sinhmax |
dx&=
\coshn-1ax | |
a(n-m)\sinhm-1ax |
+
n-1 | \int | |
n-m |
\coshn-2ax | |
\sinhmax |
dx (form ≠ n)\\ &=-
\coshn+1ax | |
a(m-1)\sinhm-1ax |
+
n-m+2 | \int | |
m-1 |
\coshnax | |
\sinhm-2ax |
dx (form ≠ 1)\\ &=-
\coshn-1ax | |
a(m-1)\sinhm-1ax |
+
n-1 | \int | |
m-1 |
\coshn-2ax | |
\sinhm-2ax |
dx (form ≠ 1) \end{align}
\begin{align} \int
\sinhmax | |
\coshnax |
dx&=
\sinhm-1ax | |
a(m-n)\coshn-1ax |
+
m-1 | \int | |
n-m |
\sinhm-2ax | |
\coshnax |
dx (form ≠ n)\\ &=
\sinhm+1ax | |
a(n-1)\coshn-1ax |
+
m-n+2 | \int | |
n-1 |
\sinhmax | |
\coshn-2ax |
dx (forn ≠ 1)\\ &=-
\sinhm-1ax | |
a(n-1)\coshn-1ax |
+
m-1 | \int | |
n-1 |
\sinhmax | |
\coshn-2ax |
dx (forn ≠ 1) \end{align}
\int\sinh(ax+b)\sin(cx+d)dx=
a | \cosh(ax+b)\sin(cx+d)- | |
a2+c2 |
c | |
a2+c2 |
\sinh(ax+b)\cos(cx+d)+C
\int\sinh(ax+b)\cos(cx+d)dx=
a | \cosh(ax+b)\cos(cx+d)+ | |
a2+c2 |
c | |
a2+c2 |
\sinh(ax+b)\sin(cx+d)+C
\int\cosh(ax+b)\sin(cx+d)dx=
a | \sinh(ax+b)\sin(cx+d)- | |
a2+c2 |
c | |
a2+c2 |
\cosh(ax+b)\cos(cx+d)+C
\int\cosh(ax+b)\cos(cx+d)dx=
a | \sinh(ax+b)\cos(cx+d)+ | |
a2+c2 |
c | |
a2+c2 |
\cosh(ax+b)\sin(cx+d)+C