List of integrals of exponential functions explained
The following is a list of integrals of exponential functions. For a complete list of integral functions, please see the list of integrals.
Indefinite integral
Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
Integrals of polynomials
\intxecxdx=ecx\left(
\right) forc ≠ 0;
\intx2ecxdx=ecx\left(
\right)
\begin{align}
\intxnecxdx&=
xnecx-
\intxn-1ecxdx\\
&=\left(
\right)n
\\
&=ecx
xn-i\\
&=ecx
(-1)n-i
xi
\end{align}
Integrals involving only exponential functions
Integrals involving the error function
In the following formulas, is the error function and is the exponential integral.
\intecxlnxdx=
\left(ecxln|x|-\operatorname{Ei}(cx)\right)
} \operatorname(\sqrt x)
dx=-
-\sqrt{\pi}\operatorname{erf}(x)
} e^}\,dx= \frac\operatorname\left(\frac\right)
Other integrals
\int
dx=
\left(
c2j
\right)+(2n-1)c2n-2\int
dx validforanyn>0,
where
(Note that the value of the expression is independent of the value of, which is why it does not appear in the integral.)
}_mdx= \sum_^m\frac\Gamma(n+1,- \ln x) + \sum_^\infty(-1)^na_\Gamma(n+1,-\ln x) \qquad\textx> 0\text}
where
amn=\begin{cases}1&ifn=0,\ \ \dfrac{1}{n!}&ifm=1,
jam,n-jam-1,j-1&otherwise\end{cases}
and is the upper incomplete gamma function.
\int
dx=
-
ln\left(aeλ+b\right)
when
,
, and
\int
dx=
\left[aeλ+b-bln\left(aeλ+b\right)\right]
when
,
, and
\int{ex\left(f\left(x\right)+f'\left(x\right)\right)dx
} = e^f\left(x \right) + C
\int{ex\left(f\left(x\right)-\left(-1\right)n
\right)dx}=ex
{\left(-1\right)k
} + C
\int{e-\left(f\left(x\right)-
\right)dx}=-e-
+C
\int{eax\left(\left(a\right)nf\left(x\right)-\left(-1\right)n
\right)dx}=eax
{\left(a\right)n-k\left(-1\right)k
} + C
Definite integrals
ex ⋅ dx
&=
\right)x ⋅ bdx\\
&=
ax ⋅ b1-xdx\\
&=
fora>0, b>0, a ≠ b
\end{align}
The last expression is the logarithmic mean.
e-axdx=
(\operatorname{Re}(a)>0)
(the
Gaussian integral)
dx=\sqrt{\pi\overa} (a>0)
}e^ \quad (a,b>0)
dx=\sqrt{\pi\over
{4a}} (a>0)
dx=\sqrt{\pi\over
{4a}-c} (a>0)
}e^ \quad (a>0) (see Integral of a Gaussian function)
} \quad (\operatorname(a)>0)
} e^ \quad (\operatorname(a)>0)
x2
\sqrt{\pi\overa3} (a>0)
} e^ \quad (\operatorname(a)>0)
} e^ \quad (\operatorname(a)>0)
xn
dx=\begin{cases}
\dfrac{\Gamma\left(
\right)}&(n>-1, a>0)\\
\dfrac{(2k-1)!!}{2k+1ak}\sqrt{\dfrac{\pi}{a}}&(n=2k, kinteger, a>0)\\
\dfrac{k!}{2(ak+1)}&(n=2k+1, kinteger, a>0)
\end{cases}
(the operator
is the
Double factorial)
xne-axdx=\begin{cases}
\dfrac{\Gamma(n+1)}{an+1
} & (n>-1,\ \operatorname(a)>0) \\ \\ \dfrac & (n=0,1,2,\ldots,\ \operatorname(a)>0) \end
xne-axdx=
\left[1-e-a
\right]
xne-axdx=
\left[1-e-ab
\right]
\sinpxdx=\arctan
-\arctan
(appears in several models of extended
superstring theory in higher dimensions)
(is the modified Bessel function of the first kind)
exd\theta=2\piI0\left(\sqrt{x2+y2}\right)
dx=\operatorname{Li}s(z)\Gamma(s),
where
is the Polylogarithm.
where
is the Euler–Mascheroni constant which equals the value of a number of definite integrals.
Finally, a well known result,where
is the
Kronecker delta.
See also
References
Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.https://www.isroset.org/pdf_paper_view.php?paper_id=3100&1-ISROSET-IJSRMSS-08692.pdf
Further reading
External links