List of formulae involving π explained

The following is a list of significant formulae involving the mathematical constant . Many of these formulae can be found in the article Pi, or the article Approximations of .

Euclidean geometry

\pi=

Cd
=
C{2r}
where is the circumference of a circle, is the diameter, and is the radius. More generally,
\pi=L
w
where and are, respectively, the perimeter and the width of any curve of constant width.

A=\pir2

where is the area of a circle. More generally,

A=\piab

where is the area enclosed by an ellipse with semi-major axis and semi-minor axis .
C=2\pi
\operatorname{agm
infty
(a,b)}\left(a
n=2

2n-1

2)\right)
(a
n
where is the circumference of an ellipse with semi-major axis and semi-minor axis and

an,bn

are the arithmetic and geometric iterations of

\operatorname{agm}(a,b)

, the arithmetic-geometric mean of and with the initial values

a0=a

and

b0=b

.

A=4\pir2

where is the area between the witch of Agnesi and its asymptotic line; is the radius of the defining circle.
A=\Gamma(1/4)2
2\sqrt{\pi
} r^2=\fracwhere is the area of a squircle with minor radius,

\Gamma

is the gamma function.

A=(k+1)(k+2)\pir2

where is the area of an epicycloid with the smaller circle of radius and the larger circle of radius (

k\inN

), assuming the initial point lies on the larger circle.
A=(-1)k+3
8

\pia2

where is the area of a rose with angular frequency (

k\inN

) and amplitude .
L=\Gamma(1/4)2
\sqrt{\pi
}c=\fracwhere is the perimeter of the lemniscate of Bernoulli with focal distance .

V={4\over3}\pir3

where is the volume of a sphere and is the radius.

SA=4\pir2

where is the surface area of a sphere and is the radius.

H={1\over2}\pi2r4

where is the hypervolume of a 3-sphere and is the radius.

SV=2\pi2r3

where is the surface volume of a 3-sphere and is the radius.

Regular convex polygons

Sum of internal angles of a regular convex polygon with sides:

S=(n-2)\pi

Area of a regular convex polygon with sides and side length :
A=ns2\cot
4
\pi
n
Inradius of a regular convex polygon with sides and side length :
r=s\cot
2
\pi
n
Circumradius of a regular convex polygon with sides and side length :
R=s\csc
2
\pi
n

Physics

Λ={{8\piG}\over{3c2}}\rho

\Deltax\Deltap\ge

h
4\pi

R\mu\nu-

1
2

g\mu\nuR+Λg\mu\nu={8\piG\overc4}T\mu\nu

F=

|q1q2|
4\pi\varepsilon0r2

[1]

\mu04\pi10-7N/A2

T2\pi\sqrt

L
g

\theta0

(

\operatorname{agm}

is the arithmetic–geometric mean):
T=2\pi
\operatorname{agm

(1,\cos

(\theta
0/2))}\sqrt{L
g
}
R3
T2

=

GM
4\pi2

F=

\pi2EI
L2

A puzzle involving "colliding billiard balls":

\lfloor{bN\pi}\rfloor

is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b2Nm, when struck by the other object.[2] (This gives the digits of π in base b up to N digits past the radix point.)

Formulae yielding

Integrals

2

1
\int
-1

\sqrt{1-x2}dx=\pi

(integrating two halves

y(x)=\sqrt{1-x2}

to obtain the area of the unit circle)
infty
\int
-infty

\operatorname{sech}xdx=\pi

infty
\int
-infty
infty
\int
t
-1/2t2-x2+xt
e

dxdt=

infty
\int
-infty
infty
\int
t
-t2-1/2x2+xt
e

dxdt=\pi

1dx
\sqrt{1-x2
\int
-1
} = \pi
inftydx
1+x2
\int
-infty

=\pi

[3] [4] (see also Cauchy distribution)
infty
\int
-infty
\sinx
x

dx=\pi

(see Dirichlet integral)
infty
\int
-infty
-x2
e

dx=\sqrt{\pi}

(see Gaussian integral).
\ointdz
z

=2\pii

(when the path of integration winds once counterclockwise around 0. See also Cauchy's integral formula).
infty
\intln\left(1+
0
1
x2

\right)dx=\pi

[5]
infty
\int
-infty
\sinx
x

dx=\pi

1
\int
0

{x4(1-x)4\over1+x2}dx={22\over7}-\pi

(see also Proof that 22/7 exceeds ).
1
\int
0

{x2(1+x)4\over1+x2}dx=\pi-{17\over15}

infty
\int
0
x\alpha-1
x+1

dx=

\pi
\sin\pi\alpha

,0<\alpha<1

infty
\int
0
dx
\sqrt{x(x+a)(x+b)
}=\frac (where

\operatorname{agm}

is the arithmetic–geometric mean; see also elliptic integral)

Note that with symmetric integrands

f(-x)=f(x)

, formulas of the form \int_^af(x)\,dx can also be translated to formulas 2\int_^af(x)\,dx.

Efficient infinite series

infty
\sum
k=0
k!
(2k+1)!!

=

infty2kk!2
(2k+1)!
\sum
k=0

=

\pi
2
(see also Double factorial)
infty
\sum
k=0
k!=
2k(2k+1)!!
2\pi
3\sqrt{3
}
infty
\sum
k=0
k!(2k)!(25k-3)=
(3k)!2k
\pi
2
infty
\sum
k=0
(-1)k(6k)!(13591409+545140134k)=
(3k)!(k!)36403203k
4270934400
\sqrt{10005

\pi}

(see Chudnovsky algorithm)
infty
\sum
k=0
(4k)!(1103+26390k)=
(k!)43964k
9801
2\sqrt{2

\pi}

(see Srinivasa Ramanujan, Ramanujan–Sato series)

The following are efficient for calculating arbitrary binary digits of :

infty
\sum
k=0
(-1)k\left(
4k
2+
4k+1
2+
4k+2
1
4k+3

\right)=\pi

[6]
infty
\sum
k=0
1
16k

\left(

4
8k+1

-

2
8k+4

-

1
8k+5

-

1
8k+6

\right)=\pi

(see Bailey–Borwein–Plouffe formula)
infty
\sum
k=0
1\left(
16k
8+
8k+2
4+
8k+3
4-
8k+4
1
8k+7

\right)=2\pi

infty
\sum
k=0
{(-1)
k}{2

10k

} \left(- \frac - \frac + \frac - \frac - \frac - \frac + \frac \right)=2^6\pi

Plouffe's series for calculating arbitrary decimal digits of :[7]

infty
\sumk
k=1
2kk!2
(2k)!

=\pi+3

Other infinite series

\zeta(2)=

1
12

+

1
22

+

1
32

+

1
42

+=

\pi2
6
(see also Basel problem and Riemann zeta function)

\zeta(4)=

1
14

+

1
24

+

1
34

+

1
44

+=

\pi4
90

\zeta(2n)=

infty
\sum
k=1
1
k2n

=

1
12n

+

1
22n

+

1
32n

+

1
42n

+=(-1)n+1

B2n(2\pi)2n
2(2n)!
, where B2n is a Bernoulli number.
infty
\sum
n=1
3n-1
4n

\zeta(n+1)=\pi

[8]
infty
\sum
n=1
7n-1
8n

\zeta(n+1)=(1+\sqrt{2})\pi

infty
\sum
n=2
2(3/2)n-3
n

(\zeta(n)-1)=ln\pi

infty
\sum
n=1

\zeta(2n)

x2n=ln
n
\pix
\sin\pix

,0<|x|<1

infty
\sum
n=0
(-1)n
2n+1

=1-

1
3

+

1
5

-

1
7

+

1
9

-=\arctan{1}=

\pi
4
(see Leibniz formula for pi)
infty
\sum
n=0
(n2-n)/2
(-1)
=1+
2n+1
13-
15-
17+
19+1
11
- … =\pi
2\sqrt{2
} (Newton, Second Letter to Oldenburg, 1676)[9]
infty
\sum
n=0
(-1)n=1-
3n(2n+1)
1+
31 ⋅ 3
1-
32 ⋅ 5
1+
33 ⋅ 7
1
34 ⋅ 9

- … =\sqrt{3}\arctan

1
\sqrt{3
}=\frac (Madhava series)
infty
\sum
n=1
(-1)n+1=
n2
1
12

-

1
22

+

1
32

-

1
42

+ … =

\pi2
12
infty
\sum
n=1
1{(2n)
2}

=

1
22

+

1
42

+

1
62

+

1
82

+=

\pi2
24
infty
\sum
n=0

\left(

1
2n+1

\right)2=

1
12

+

1
32

+

1
52

+

1
72

+=

\pi2
8
infty
\sum
n=0

\left(

(-1)n
2n+1

\right)3=

1
13

-

1
33

+

1
53

-

1
73

+=

\pi3
32
infty
\sum
n=0

\left(

1
2n+1

\right)4=

1
14

+

1
34

+

1
54

+

1
74

+=

\pi4
96
infty
\sum
n=0

\left(

(-1)n
2n+1

\right)5=

1
15

-

1
35

+

1
55

-

1
75

+=

5\pi5
1536
infty
\sum
n=0

\left(

1
2n+1

\right)6=

1
16

+

1
36

+

1
56

+

1
76

+=

\pi6
960

In general,

infty
\sum
n=0
(-1)n
(2n+1)2k+1

=(-1)k

E2k\left(
2(2k)!
\pi
2

\right)2k+1,k\inN0

where

E2k

is the

2k

th Euler number.[10]
infty
\sum\binom{
n=0
1
2
}\frac = 1 - \frac - \frac-\cdots = \frac
infty
\sum
n=0
1
(4n+1)(4n+3)

=

1+
1 ⋅ 3
1+
5 ⋅ 7
1+ … =
9 ⋅ 11
\pi
8
infty
\sum
n=1
(n2+n)/2+1
(-1)
\left|G
\left((-1)n+1+6n-3\right)/4

\right|=|G1|+|G2|-|G4|-|G5|+|G7|+|G8|-|G10|-|G11|+ … =

\sqrt{3
} (see Gregory coefficients)
infty
\sum
n=0
2
(1/2)
n
2nn!2
infty
\sum
n=0
2
n(1/2)
n
=
2nn!2
1
\pi
(where

(x)n

is the rising factorial)[11]
infty
\sum
n=1
(-1)n+1
n(n+1)(2n+1)

=\pi-3

(Nilakantha series)
infty
\sum
n=1
F2n{n}}=
n2\binom{2n
4\pi2
25\sqrt5
(where

Fn

is the n-th Fibonacci number)
infty
\sum
n=1

\sigma(n)e-2\pi=

1-
24
1
8\pi
(where

\sigma

is the sum-of-divisors function)

\pi=

infty
\sum
n=1
(-1)\epsilon
n

=1+

1
2

+

1
3

+

1
4

-

1
5

+

1
6

+

1
7

+

1
8

+

1
9

-

1
10

+

1
11

+

1
12

-

1
13

+

  (where

\epsilon(n)

is the number of prime factors of the form

p\equiv1(mod4)

of

n

)[12] [13]
\pi
2
infty
=\sum
n=1
(-1)\varepsilon=1+
n
1-
2
1+
3
1+
4
1-
5
1-
6
1+
7
1+
8
1
9

+ …

  (where

\varepsilon(n)

is the number of prime factors of the form

p\equiv3(mod4)

of

n

)[14]
infty
\pi=\sum
n=-infty
(-1)n
n+1/2
infty
\pi
n=-infty
1
(n+1/2)2
[15]

The last two formulas are special cases of

\begin{align}\pi
\sin\pix
infty
&=\sum
n=-infty
(-1)n\\ \left(
n+x
\pi
\sin\pix
infty
\right)
n=-infty
1
(n+x)2

\end{align}

which generate infinitely many analogous formulas for

\pi

when

x\inQ\setminusZ.

Some formulas relating and harmonic numbers are given here. Further infinite series involving π are:[16]

\pi=1
Z
infty
Z=\sum
n=0
((2n)!)3(42n+5)
(n!)6{16

3n+1

}
\pi=4
Z
infty
Z=\sum
n=0
(-1)n(4n)!(21460n+1123)
(n!)4{441

2n+1{2}10n+1

}
\pi=4
Z
infty
Z=\sum
n=0
(6n+1)\left(
1
2
\right
3
)
n
{4n

(n!)3}

\pi=32
Z
infty
Z=\sum
n=0

\left(

\sqrt{5
-1}{2}

\right)8n

(42n\sqrt{5
+30n

+5\sqrt{5}-1)\left(

1
2

\right

3
)
n}

{{64n}(n!)3}

\pi=27
4Z
infty
Z=\sum
n=0

\left(

2
27

\right)n

(15n+2)\left(
1
2
\right)n\left(
1
3
\right)n\left(
2
3
\right)n
(n!)3
\pi=15\sqrt{3
}
infty
Z=\sum
n=0

\left(

4
125

\right)n

(33n+4)\left(
1
2
\right)n\left(
1
3
\right)n\left(
2
3
\right)n
(n!)3
\pi=85\sqrt{85
}
infty
Z=\sum
n=0

\left(

4
85

\right)n

(133n+8)\left(
1
2
\right)n\left(
1
6
\right)n\left(
5
6
\right)n
(n!)3
\pi=5\sqrt{5
}
infty
Z=\sum
n=0

\left(

4
125

\right)n

(11n+1)\left(
1
2
\right)n\left(
1
6
\right)n\left(
5
6
\right)n
(n!)3
\pi=2\sqrt{3
}
infty
Z=\sum
n=0
(8n+1)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)3{9

n

}
\pi=\sqrt{3
}
infty
Z=\sum
n=0
(40n+3)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)3{49

2n+1

}
\pi=2\sqrt{11
}
infty
Z=\sum
n=0
(280n+19)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)3{99

2n+1

}
\pi=\sqrt{2
}
infty
Z=\sum
n=0
(10n+1)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)3{9

2n+1

}
\pi=4\sqrt{5
}
infty
Z=\sum
n=0
(644n+41)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)35n{72

2n+1

}
\pi=4\sqrt{3
}
infty
Z=\sum
n=0
n(28n+3)
(-1)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)3{3n

{4}n+1

}
\pi=4
Z
infty
Z=\sum
n=0
n(20n+3)
(-1)\left(
1
2
\right)n\left(
1
4
\right)n\left(
3
4
\right)n
(n!)3{2

2n+1

}
\pi=72
Z

infty
Z=\sum
n=0
(-1)n(4n)!(260n+23)
(n!)444n182n
\pi=3528
Z

infty
Z=\sum
n=0
(-1)n(4n)!(21460n+1123)
(n!)444n8822n

where

(x)n

is the Pochhammer symbol for the rising factorial. See also Ramanujan–Sato series.

Machin-like formulae

See also: Machin-like formula.

\pi
4

=\arctan1

\pi
4

=\arctan

1
2

+\arctan

1
3
\pi
4

=2\arctan

1
2

-\arctan

1
7
\pi
4

=2\arctan

1
3

+\arctan

1
7
\pi
4

=4\arctan

1
5

-\arctan

1
239

(the original Machin's formula)
\pi
4

=5\arctan

1
7

+2\arctan

3
79
\pi
4

=6\arctan

1
8

+2\arctan

1
57

+\arctan

1
239
\pi
4

=12\arctan

1
49

+32\arctan

1
57

-5\arctan

1
239

+12\arctan

1
110443
\pi
4

=44\arctan

1
57

+7\arctan

1
239

-12\arctan

1
682

+24\arctan

1
12943

Infinite products

\pi
4

=\left(\prodp\equiv

p
p-1

\right)\left(\prodp\equiv

p\right)=
p+1
3
4

5
4

7
8

11
12

13
12

,

(Euler)

where the numerators are the odd primes; each denominator is the multiple of four nearest to the numerator.

\sqrt{3
\pi}{6}=\left(\displaystyle\prod

p\atopp\inP}

p
p-1

\right)\left(\displaystyle\prodp\atopp\inP}

p\right)=
p+1
5
6

7
6

11
12

13
12

17
18

\pi
2
infty
=\prod
n=1
(2n)(2n)
(2n-1)(2n+1)

=

2
1

2
3

4
3

4
5

6
5

6
7

8
7

8
9

(see also Wallis product)
\pi
2
infty\left(1+1
n
=\prod
n=1
(-1)n+1
\right)=\left(1+
1
1

\right)+1\left(1+

1
2

\right)-1\left(1+

1
3

\right)+1

(another form of Wallis product)

Viète's formula

2=
\pi
\sqrt2
2

\sqrt{2+\sqrt2
}2 \cdot \frac2 \cdot \cdots

A double infinite product formula involving the Thue–Morse sequence:

\pi
2

=\prodm\geq1\prodn\geq1\left(

(4m2+n-2)(4m2+2n-1)2
4(2m2+n-1)(4m2+n-1)(2m2+n)

\right)

\epsilonn

,

where

\epsilonn=

tn
(-1)
and

tn

is the Thue–Morse sequence .

Arctangent formulas

\pi
2k+1

=\arctan

\sqrt{2-ak-1
}, \qquad\qquad k\geq 2
\pi
4

=\sumk\geq\arctan

\sqrt{2-ak-1
}, where

ak=\sqrt{2+ak-1

} such that

a1=\sqrt{2}

.
\pi
2

=

infty
\sum\arctan
k=0
1
F2k+1

=\arctan

1
1

+\arctan

1
2

+\arctan

1
5

+\arctan

1
13

+

where

Fk

is the k-th Fibonacci number.

\pi=\arctana+\arctanb+\arctanc

whenever

a+b+c=abc

and

a

,

b

,

c

are positive real numbers (see List of trigonometric identities). A special case is

\pi=\arctan1+\arctan2+\arctan3.

Complex functions

ei+1=0

(Euler's identity)

z

:

ez\inR\leftrightarrow\Imz\in\piZ

ez=1\leftrightarrowz\in2\piiZ

[17] Also
1
ez-1

=\limN\toinfty

N
\sum
n=-N
1-
z-2\piin
1
2

,z\inC.

\Omega

is generated by two periods

\omega1,\omega2

. We define the quasi-periods of this lattice by

η1=\zeta(z+\omega1;\Omega)-\zeta(z;\Omega)

and

η2=\zeta(z+\omega2;\Omega)-\zeta(z;\Omega)

where

\zeta

is the Weierstrass zeta function (

η1

and

η2

are in fact independent of

z

). Then the periods and quasi-periods are related by the Legendre identity:

η1\omega2-η2\omega1=2\pii.

Continued fractions

4
\pi

=1+\cfrac{12}{2+\cfrac{32}{2+\cfrac{52}{2+\cfrac{72}{2+\ddots}}}}

[18]
\varpi2
\pi

={2+\cfrac{12}{4+\cfrac{32}{4+\cfrac{52}{4+\cfrac{72}{4+\ddots}}}}}

(Ramanujan,

\varpi

is the lemniscate constant)[19]

\pi={3+\cfrac{12}{6+\cfrac{32}{6+\cfrac{52}{6+\cfrac{72}{6+\ddots}}}}}

[18]

\pi=\cfrac{4}{1+\cfrac{12}{3+\cfrac{22}{5+\cfrac{32}{7+\cfrac{42}{9+\ddots}}}}}

2\pi={6+\cfrac{22}{12+\cfrac{62}{12+\cfrac{102}{12+\cfrac{142}{12+\cfrac{182}{12+\ddots}}}}}}

\pi=4-\cfrac{2}{1+\cfrac{1}{1-\cfrac{1}{1+\cfrac{2}{1-\cfrac{2}{1+\cfrac{3}{1-\cfrac{3}{\ddots}}}}}}}

For more on the fourth identity, see Euler's continued fraction formula.

(See also Continued fraction and Generalized continued fraction.)

Iterative algorithms

a0=1,an+1=\left(1+

1
2n+1

\right)an,\pi=\limn\toinfty

2
a
n
n

a1=0,an+1=\sqrt{2+an},\pi=\limn\toinfty

n\sqrt{2-a
2
n}
(closely related to Viète's formula)

\omega(in,in-1,...,i1)=2+in\sqrt{2+in-1\sqrt{2+ … +i1\sqrt{2}}}=\omega(bn,bn-1,...,b1),ik\in\{-1,1\},bk=\begin{cases} 0&ifik=1\\ 1&ifik=-1 \end{cases},\pi={\displaystyle\limn

2n+1
2h+1

\sqrt{\omega\left(\underbrace{10\ldots0}n-mgm,\right)}}

(where

gm,

is the h+1-th entry of m-bit Gray code,

h\in\left\{0,1,\ldots,2m-1\right\}

)[20]

\forallk\inN,a1=2,an=an+2(1-\tan(2kan)),\pi=2k\limnan

(quadratic convergence)[21]

a1=1,an+1=an+\sinan,\pi=\limn\toinftyan

(cubic convergence)[22]

a0=2\sqrt{3},b0=3,an+1=\operatorname{hm}(an,bn),bn+1=\operatorname{gm}(an+1,bn),\pi=\limn\toinftyan=\limn\toinftybn

(Archimedes' algorithm, see also harmonic mean and geometric mean)[23]

For more iterative algorithms, see the Gauss–Legendre algorithm and Borwein's algorithm.

Asymptotics

\binom{2n}{n}\sim

4n
\sqrt{\pin
} (asymptotic growth rate of the central binomial coefficients)

Cn\sim

4n
\sqrt{\pin3
} (asymptotic growth rate of the Catalan numbers)

n!\sim\sqrt{2\pin}\left(

n
e

\right)n

(Stirling's approximation)

logn!\simeq\left(n+

12\right)log
n-n+log2\pi
2
n
\sum
k=1

\varphi(k)\sim

3n2
\pi2
(where

\varphi

is Euler's totient function)
n
\sum
k=1
\varphi(k)
k

\sim

6n
\pi2

The symbol

\sim

means that the ratio of the left-hand side and the right-hand side tends to one as

n\toinfty

.

The symbol

\simeq

means that the difference between the left-hand side and the right-hand side tends to zero as

n\toinfty

.

Hypergeometric inversions

With

{}2F1

being the hypergeometric function:
infty
\sum
n=0
n={}
r
2F
1\left(
12,12,1,z\right)
where

q=\exp\left(-\pi

{
2F

1(1/2,1/2,1,1-z)}{{}2F1(1/2,1/2,1,z)}\right),z\inC\setminus\{0,1\}

and

r2

is the sum of two squares function.

Similarly,

infty
1+240\sum
n=1
n
\sigma
3(n)q

={}2F

1\left(
16,56,1,z\right)
4
where

q=\exp\left(-2\pi

{
2F

1(1/6,5/6,1,1-z)}{{}2F1(1/6,5/6,1,z)}\right),z\inC\setminus\{0,1\}

and

\sigma3

is a divisor function.

More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases.

\tau

and the Fourier coefficients

j

of the J-invariant :
infty
\sum
n=-1
n=256\dfrac{(1-z+z
j
nq

2)3}{z2(1-z)2},

infty
\sum
n=1

\tau(n)qn=\dfrac{z2(1-z)

2}{256}{}
2F
1\left(
12,12,1,z\right)
12
where in both cases

q=\exp\left(-2\pi

{
2F

1(1/2,1/2,1,1-z)}{{}2F1(1/2,1/2,1,z)}\right),z\inC\setminus\{0,1\}.

Furthermore, by expanding the last expression as a power series in

\dfrac{1}{2}\dfrac{1-(1-z)1/4

}and setting

z=1/2

, we obtain a rapidly convergent series for

e-2\pi

:[24]

e-2\pi=w2+4w6+34w10+360w14+4239w18+ … ,w=\dfrac{1}{2}\dfrac{21/4-1}{21/4+1}.

Miscellaneous

\Gamma(s)\Gamma(1-s)=

\pi
\sin\pis
(Euler's reflection formula, see Gamma function)

\pi-s/2\Gamma\left(

s
2

\right)\zeta(s)=\pi-(1-s)/2\Gamma\left(

1-s
2

\right)\zeta(1-s)

(the functional equation of the Riemann zeta function)

e-\zeta'(0)=\sqrt{2\pi}

e\zeta'(0,1/2)-\zeta'(0,1)=\sqrt{\pi}

(where

\zeta(s,a)

is the Hurwitz zeta function and the derivative is taken with respect to the first variable)

\pi=\Beta(1/2,1/2)=\Gamma(1/2)2

(see also Beta function)

\pi=

\Gamma(3/4)4
\operatorname{agm
2}=\Gamma\left({1/4
\right)
(1,1/\sqrt{2})

4/3\operatorname{agm}(1,\sqrt{2})2/3

} (where agm is the arithmetic–geometric mean)

\pi=

2(1/e)\right)
\operatorname{agm}\left(\theta
3
(where

\theta2

and

\theta3

are the Jacobi theta functions[25])
\operatorname{agm}(1,\sqrt{2})=\pi
\varpi
(due to Gauss,[26]

\varpi

is the lemniscate constant)

\operatorname{N}(2\varpi)=e2\pi,\operatorname{N}(\varpi)=e\pi/2

(where

\operatorname{N}

is the Gauss N-function)

i\pi=\operatorname{Log}(-1)=\limn\toinftyn\left((-1)1/n-1\right)

(where

\operatorname{Log}

is the principal value of the complex logarithm)[27]
1-\pi2
12

=\limn

1
n2
n
\sum
k=1

(n\bmodk)

(where n\bmod k is the remainder upon division of n by k)

\pi=\limr

1
r2
r
\sum
x=-r

r
\sum
y=-r

\begin{cases} 1&if\sqrt{x2+y2}\ler\\ 0&if\sqrt{x2+y2}>r\end{cases}

(summing a circle's area)

\pi=\limn

4
n2
n
\sum
k=1

\sqrt{n2-k2}

(Riemann sum to evaluate the area of the unit circle)

\pi=\limn\toinfty

24nn!4
n(2n)!2

=\limn

24n
n{2n\choosen

2}=\limn

1\left(
n
(2n)!!
(2n-1)!!

\right)2

(by combining Stirling's approximation with Wallis product)

\pi=\limn\toinfty

1ln
n
16
λ(ni)
(where

λ

is the modular lambda function)[28] [29]

\pi=\limn\toinfty

24
\sqrt{n
}\ln \left(2^ G_n\right)=\lim_\frac\ln \left(2^g_n\right) (where

Gn

and

gn

are Ramanujan's class invariants)[30] [31]

References

Other

Further reading

Notes and References

  1. The relation

    \mu0=4\pi10-7N/A2

    was valid until the 2019 redefinition of the SI base units.
  2. Galperin . G. . 2003 . Playing pool with π (the number π from a billiard point of view) . Regular and Chaotic Dynamics . 8 . 4 . 375–394. 10.1070/RD2003v008n04ABEH000252 .
  3. Book: Rudin . Walter. Walter Rudin. Real and Complex Analysis . McGraw-Hill Book Company . 1987 . Third . 0-07-100276-6. p. 4
  4. (integral form of arctan over its entire domain, giving the period of tan)
  5. https://oeis.org/A000796 A000796 – OEIS
  6. Book: Arndt . Jörg . Haenel. Christoph . π Unleashed . Springer-Verlag Berlin Heidelberg . 2001. 978-3-540-66572-4. page 126
  7. Web site: Computation of the n-th decimal digit of π with low memory. Gourdon. Xavier. Numbers, constants and computation. 1.
  8. http://mathworld.wolfram.com/PiFormulas.html Weisstein, Eric W. "Pi Formulas", MathWorld
  9. Book: Chrystal . G. . Algebra, an Elementary Text-book: Part II . 1900 . 335.
  10. Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 112
  11. Book: Cooper . Shaun . Ramanujan's Theta Functions . Springer . 2017 . First . 978-3-319-56171-4. (page 647)
  12. Book: Euler . Leonhard . Introductio in analysin infinitorum . 1. Latin. 1748. p. 245
  13. [Carl B. Boyer]
  14. Book: Euler . Leonhard . Introductio in analysin infinitorum . 1. Latin. 1748. p. 244
  15. Web site: Wästlund . Johan . Summing inverse squares by euclidean geometry. The paper gives the formula with a minus sign instead, but these results are equivalent.
  16. Web site: The world of Pi . Simon Plouffe / David Bailey . Pi314.net . 2011-01-29.
    Web site: Collection of series for . Numbers.computation.free.fr . 2011-01-29.
  17. Book: Rudin . Walter. Walter Rudin. Real and Complex Analysis . McGraw-Hill Book Company . 1987 . Third . 0-07-100276-6. p. 3
  18. Book: Loya . Paul . Amazing and Aesthetic Aspects of Analysis . Springer . 2017 . 978-1-4939-6793-3. 589.
  19. Book: Perron . Oskar . German . Oskar Perron. Die Lehre von den Kettenbrüchen: Band II . B. G. Teubner . 1957 . Third. p. 36, eq. 24
  20. Vellucci. Pierluigi. Bersani. Alberto Maria. 2019-12-01. $$\pi $$-Formulas and Gray code. Ricerche di Matematica. en. 68. 2. 551–569. 10.1007/s11587-018-0426-4. 1606.09597 . 119578297 . 1827-3491.
  21. Abrarov. Sanjar M.. Siddiqui. Rehan. Jagpal. Rajinder K.. Quine. Brendan M.. 2021-09-04. Algorithmic Determination of a Large Integer in the Two-Term Machin-like Formula for π . Mathematics. en. 9. 17. 2162. 10.3390/math9172162 . 2107.01027 . free .
  22. Book: Arndt . Jörg . Haenel. Christoph . π Unleashed . Springer-Verlag Berlin Heidelberg . 2001. 978-3-540-66572-4. page 49
  23. Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 2
  24. The coefficients can be obtained by reversing the Puiseux series of

    z\mapsto

    infty
    \sqrt{z}\dfrac{\sum
    n=0
    2n2+2n
    z
    }at

    z=0

    .
  25. Book: Borwein . Jonathan M. . Borwein. Peter B. . Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity . Wiley-Interscience . 1987 . First . 0-471-83138-7. page 225
  26. Web site: The Arithmetic-Geometric Mean of Gauss. Gilmore. Tomack. Universität Wien. 13.
  27. The

    n

    th root with the smallest positive principal argument is chosen.
  28. Book: https://link.springer.com/chapter/10.1007/978-1-4757-3240-5_62. Borwein. J.. Borwein. P.. Pi: A Source Book . Ramanujan and Pi . Springer Link. 2000 . 588–595 . 10.1007/978-1-4757-3240-5_62 . 978-1-4757-3242-9 .
  29. When

    n\inQ+

    , this gives algebraic approximations to Gelfond's constant

    e\pi

    .
  30. Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 248
  31. When

    \sqrt{n}\inQ+

    , this gives algebraic approximations to Gelfond's constant

    e\pi

    .