List of formulae involving π explained
The following is a list of significant formulae involving the mathematical constant . Many of these formulae can be found in the article Pi, or the article Approximations of .
Euclidean geometry
where is the
circumference of a
circle, is the
diameter, and is the
radius. More generally,
where and are, respectively, the
perimeter and the width of any
curve of constant width.
where is the
area of a circle. More generally,
where is the area enclosed by an
ellipse with semi-major axis and semi-minor axis .
where is the circumference of an ellipse with semi-major axis and semi-minor axis and
are the arithmetic and geometric iterations of
, the
arithmetic-geometric mean of and with the initial values
and
.
where is the area between the
witch of Agnesi and its asymptotic line; is the radius of the defining circle.
} r^2=\fracwhere is the area of a
squircle with minor radius,
is the
gamma function.
where is the area of an
epicycloid with the smaller circle of radius and the larger circle of radius (
), assuming the initial point lies on the larger circle.
where is the area of a
rose with angular frequency (
) and amplitude .
}c=\fracwhere is the perimeter of the
lemniscate of Bernoulli with focal distance .
where is the volume of a
sphere and is the radius.
where is the surface area of a sphere and is the radius.
where is the hypervolume of a
3-sphere and is the radius.
where is the surface volume of a 3-sphere and is the radius.
Regular convex polygons
Sum of internal angles of a regular convex polygon with sides:
Area of a regular convex polygon with sides and side length :
Inradius of a regular convex polygon with sides and side length :
Circumradius of a regular convex polygon with sides and side length :
Physics
Λ={{8\piG}\over{3c2}}\rho
R\mu\nu-
g\mu\nuR+Λg\mu\nu={8\piG\overc4}T\mu\nu
[1]
- Approximate period of a simple pendulum with small amplitude:
- Exact period of a simple pendulum with amplitude
(
is the
arithmetic–geometric mean):
}
- Kepler's third law of planetary motion
A puzzle involving "colliding billiard balls":
is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass
m initially at rest between a fixed wall and another object of mass
b2Nm, when struck by the other object.
[2] (This gives the digits of π in base
b up to
N digits past the radix point.)
Formulae yielding
Integrals
(integrating two halves
to obtain the area of the unit circle)
\operatorname{sech}xdx=\pi
} = \pi
[3] [4] (see also
Cauchy distribution)
(see
Dirichlet integral)
(see
Gaussian integral).
(when the path of integration winds once counterclockwise around 0. See also
Cauchy's integral formula).
[5]
{x4(1-x)4\over1+x2}dx={22\over7}-\pi
(see also
Proof that 22/7 exceeds ).
{x2(1+x)4\over1+x2}dx=\pi-{17\over15}
}=\frac (where
is the
arithmetic–geometric mean; see also
elliptic integral)
Note that with symmetric integrands
, formulas of the form
can also be translated to formulas
.
Efficient infinite series
(see also
Double factorial)
}
| (-1)k(6k)!(13591409+545140134k) | = |
(3k)!(k!)36403203k |
\pi}
(see
Chudnovsky algorithm)
| (4k)!(1103+26390k) | = |
(k!)43964k |
\pi}
(see Srinivasa Ramanujan,
Ramanujan–Sato series)
The following are efficient for calculating arbitrary binary digits of :
[6]
(see
Bailey–Borwein–Plouffe formula)
} \left(- \frac - \frac + \frac - \frac - \frac - \frac + \frac \right)=2^6\pi
Plouffe's series for calculating arbitrary decimal digits of :[7]
Other infinite series
(see also
Basel problem and
Riemann zeta function)
\zeta(2n)=
=
+
+
+
+ … =(-1)n+1
, where
B2n is a
Bernoulli number.
[8]
\zeta(n+1)=(1+\sqrt{2})\pi
=1-
+
-
+
- … =\arctan{1}=
(see
Leibniz formula for pi)
} (
Newton,
Second Letter to Oldenburg, 1676)
[9]
}=\frac (
Madhava series)
\left(
\right)2=
+
+
+
+ … =
\left(
\right)3=
-
+
-
+ … =
\left(
\right)4=
+
+
+
+ … =
\left(
\right)5=
-
+
-
+ … =
\left(
\right)6=
+
+
+
+ … =
In general,
=(-1)k
\right)2k+1, k\inN0
where
is the
th
Euler number.
[10]
}\frac = 1 - \frac - \frac-\cdots = \frac
\left|G | |
| \left((-1)n+1+6n-3\right)/4 |
\right|=|G1|+|G2|-|G4|-|G5|+|G7|+|G8|-|G10|-|G11|+ … =
} (see
Gregory coefficients)
(where
is the
rising factorial)
[11]
(
Nilakantha series)
(where
is the
n-th
Fibonacci number)
(where
is the
sum-of-divisors function)
\pi=
=1+
+
+
-
+
+
+
+
-
+
+
-
+ …
(where
is the number of prime factors of the form
of
)
[12] [13]
(where
is the number of prime factors of the form
of
)
[14]
[15] The last two formulas are special cases of
which generate infinitely many analogous formulas for
when
Some formulas relating and harmonic numbers are given here. Further infinite series involving π are:[16]
|
} |
| | (-1)n(4n)!(21460n+1123) | (n!)4{441 |
2n+1{2}10n+1
} |
|
|
|
\left(
\right)8n
+5\sqrt{5}-1)\left(
\right
{{64n}(n!)3}
|
|
\left(
\right)n
| (15n+2)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3 |
|
} |
\left(
\right)n
| (33n+4)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3 |
|
} |
\left(
\right)n
| (133n+8)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3 |
|
} |
\left(
\right)n
| (11n+1)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3 |
|
} | | (8n+1)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3{9 |
n
} |
} | | (40n+3)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3{49 |
2n+1
} |
} | | (280n+19)\left | (\right)n\left(\right)n\left(\right)n |
| (n!)3{99 |
2n+1
} |
} | | (10n+1) | \left(\right)n\left(\right)n\left(\right)n |
| (n!)3{9 |
2n+1
} |
} | | (644n+41) | \left(\right)n\left(\right)n\left(\right)n |
| (n!)35n{72 |
2n+1
} |
} | | | n(28n+3) | | (-1) | | \left(\right)n\left(\right)n\left(\right)n |
| (n!)3{3n |
{4}n+1
} |
| | | n(20n+3) | | (-1) | | \left(\right)n\left(\right)n\left(\right)n |
| (n!)3{2 |
2n+1
} |
| | (-1)n(4n)!(260n+23) | (n!)444n182n |
|
| | (-1)n(4n)!(21460n+1123) | (n!)444n8822n |
| |
where
is the Pochhammer symbol for the rising factorial. See also
Ramanujan–Sato series.
Machin-like formulae
See also: Machin-like formula.
(the original
Machin's formula)
=6\arctan
+2\arctan
+\arctan
=12\arctan
+32\arctan
-5\arctan
+12\arctan
=44\arctan
+7\arctan
-12\arctan
+24\arctan
Infinite products
=\left(\prodp\equiv
\right) ⋅ \left(\prodp\equiv
⋅
⋅
⋅
⋅
… ,
(Euler)
where the numerators are the odd primes; each denominator is the multiple of four nearest to the numerator.
| \sqrt{3 |
\pi}{6}=\left(\displaystyle\prod |
p\atopp\inP}
\right) ⋅ \left(\displaystyle\prodp\atopp\inP}
⋅
⋅
⋅
⋅
…
(see also
Wallis product)
\right)+1\left(1+
\right)-1\left(1+
\right)+1 …
(another form of Wallis product)
Viète's formula
}2 \cdot \frac2 \cdot \cdots
A double infinite product formula involving the Thue–Morse sequence:
=\prodm\geq1\prodn\geq1\left(
| (4m2+n-2)(4m2+2n-1)2 |
4(2m2+n-1)(4m2+n-1)(2m2+n) |
\right)
,
where
and
is the Thue–Morse sequence .
Arctangent formulas
}, \qquad\qquad k\geq 2
}, where
} such that
.
=
=\arctan
+\arctan
+\arctan
+\arctan
+ …
where
is the
k-th Fibonacci number.
\pi=\arctana+\arctanb+\arctanc
whenever
and
,
,
are positive real numbers (see
List of trigonometric identities). A special case is
\pi=\arctan1+\arctan2+\arctan3.
Complex functions
(
Euler's identity)
:
ez\inR\leftrightarrow\Imz\in\piZ
ez=1\leftrightarrowz\in2\piiZ
[17] Also
is generated by two
periods
. We define the
quasi-periods of this lattice by
η1=\zeta(z+\omega1;\Omega)-\zeta(z;\Omega)
and
η2=\zeta(z+\omega2;\Omega)-\zeta(z;\Omega)
where
is the
Weierstrass zeta function (
and
are in fact independent of
). Then the periods and quasi-periods are related by the
Legendre identity:
η1\omega2-η2\omega1=2\pii.
Continued fractions
=1+\cfrac{12}{2+\cfrac{32}{2+\cfrac{52}{2+\cfrac{72}{2+\ddots}}}}
[18]
={2+\cfrac{12}{4+\cfrac{32}{4+\cfrac{52}{4+\cfrac{72}{4+\ddots}}}}}
(
Ramanujan,
is the
lemniscate constant)
[19] \pi={3+\cfrac{12}{6+\cfrac{32}{6+\cfrac{52}{6+\cfrac{72}{6+\ddots}}}}}
[18] \pi=\cfrac{4}{1+\cfrac{12}{3+\cfrac{22}{5+\cfrac{32}{7+\cfrac{42}{9+\ddots}}}}}
2\pi={6+\cfrac{22}{12+\cfrac{62}{12+\cfrac{102}{12+\cfrac{142}{12+\cfrac{182}{12+\ddots}}}}}}
\pi=4-\cfrac{2}{1+\cfrac{1}{1-\cfrac{1}{1+\cfrac{2}{1-\cfrac{2}{1+\cfrac{3}{1-\cfrac{3}{\ddots}}}}}}}
For more on the fourth identity, see
Euler's continued fraction formula.
(See also Continued fraction and Generalized continued fraction.)
Iterative algorithms
a0=1,an+1=\left(1+
\right)an,\pi=\limn\toinfty
a1=0,an+1=\sqrt{2+an},\pi=\limn\toinfty
(closely related to Viète's formula)
\omega(in,in-1,...,i1)=2+in\sqrt{2+in-1\sqrt{2+ … +i1\sqrt{2}}}=\omega(bn,bn-1,...,b1),ik\in\{-1,1\},bk=\begin{cases}
0&ifik=1\\
1&ifik=-1
\end{cases},\pi={\displaystyle\limn
\sqrt{\omega\left(\underbrace{10\ldots0}n-mgm,\right)}}
(where
is the h+1-th entry of
m-bit Gray code,
h\in\left\{0,1,\ldots,2m-1\right\}
)
[20] \forallk\inN,a1=2,an=an+2(1-\tan(2kan)),\pi=2k\limnan
(quadratic convergence)
[21] a1=1,an+1=an+\sinan,\pi=\limn\toinftyan
(cubic convergence)
[22] a0=2\sqrt{3},b0=3,an+1=\operatorname{hm}(an,bn),bn+1=\operatorname{gm}(an+1,bn),\pi=\limn\toinftyan=\limn\toinftybn
(
Archimedes' algorithm, see also
harmonic mean and
geometric mean)
[23] For more iterative algorithms, see the Gauss–Legendre algorithm and Borwein's algorithm.
Asymptotics
} (asymptotic growth rate of the
central binomial coefficients)
} (asymptotic growth rate of the
Catalan numbers)
n!\sim\sqrt{2\pin}\left(
\right)n
(
Stirling's approximation)
(where
is
Euler's totient function)
The symbol
means that the
ratio of the left-hand side and the right-hand side tends to one as
.
The symbol
means that the
difference between the left-hand side and the right-hand side tends to zero as
.
Hypergeometric inversions
With
being the
hypergeometric function:
where
q=\exp\left(-\pi
1(1/2,1/2,1,1-z)}{{}2F1(1/2,1/2,1,z)}\right), z\inC\setminus\{0,1\}
and
is the
sum of two squares function.
Similarly,
where
q=\exp\left(-2\pi
1(1/6,5/6,1,1-z)}{{}2F1(1/6,5/6,1,z)}\right), z\inC\setminus\{0,1\}
and
is a
divisor function.
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases.
and the Fourier coefficients
of the
J-invariant :
where in both cases
q=\exp\left(-2\pi
1(1/2,1/2,1,1-z)}{{}2F1(1/2,1/2,1,z)}\right), z\inC\setminus\{0,1\}.
Furthermore, by expanding the last expression as a power series in
\dfrac{1}{2}\dfrac{1-(1-z)1/4
}and setting
, we obtain a rapidly convergent series for
:
[24] e-2\pi=w2+4w6+34w10+360w14+4239w18+ … , w=\dfrac{1}{2}\dfrac{21/4-1}{21/4+1}.
Miscellaneous
(Euler's reflection formula, see
Gamma function)
\pi-s/2\Gamma\left(
\right)\zeta(s)=\pi-(1-s)/2\Gamma\left(
\right)\zeta(1-s)
(the functional equation of the Riemann zeta function)
e\zeta'(0,1/2)-\zeta'(0,1)=\sqrt{\pi}
(where
is the
Hurwitz zeta function and the derivative is taken with respect to the first variable)
\pi=\Beta(1/2,1/2)=\Gamma(1/2)2
(see also
Beta function)
\pi=
| \Gamma(3/4)4 |
\operatorname{agm |
| 2}= | \Gamma\left({1/4 | \right) |
|
(1,1/\sqrt{2}) | |
4/3\operatorname{agm}(1,\sqrt{2})2/3
} (where agm is the
arithmetic–geometric mean)
\pi=
| 2(1/e)\right) |
\operatorname{agm}\left(\theta | |
| 3 |
(where
and
are the Jacobi theta functions
[25])
\operatorname{agm}(1,\sqrt{2})= | \pi |
\varpi |
(due to
Gauss,
[26]
is the
lemniscate constant)
\operatorname{N}(2\varpi)=e2\pi, \operatorname{N}(\varpi)=e\pi/2
(where
is the Gauss N-function)
i\pi=\operatorname{Log}(-1)=\limn\toinftyn\left((-1)1/n-1\right)
(where
is the principal value of the complex logarithm)
[27]
(where
is the
remainder upon division of
n by
k)
\pi=\limr
\begin{cases}
1&if\sqrt{x2+y2}\ler\\
0&if\sqrt{x2+y2}>r\end{cases}
(summing a circle's area)
(
Riemann sum to evaluate the area of the unit circle)
\pi=\limn\toinfty
=\limn
2}=\limn
\right)2
(by combining Stirling's approximation with Wallis product)
(where
is the modular lambda function)
[28] [29]
}\ln \left(2^ G_n\right)=\lim_\frac\ln \left(2^g_n\right) (where
and
are Ramanujan's class invariants)
[30] [31] References
Other
Further reading
- Borwein . Peter . 3 . Nieuw Archief voor Wiskunde . 254–258 . 5th series . The amazing number . 1 . 2000 . 1173.01300.
- Kazuya Kato, Nobushige Kurokawa, Saito Takeshi: Number Theory 1: Fermat's Dream. American Mathematical Society, Providence 1993, .
Notes and References
- The relation
was valid until the 2019 redefinition of the SI base units.
- Galperin . G. . 2003 . Playing pool with π (the number π from a billiard point of view) . Regular and Chaotic Dynamics . 8 . 4 . 375–394. 10.1070/RD2003v008n04ABEH000252 .
- Book: Rudin . Walter. Walter Rudin. Real and Complex Analysis . McGraw-Hill Book Company . 1987 . Third . 0-07-100276-6. p. 4
- (integral form of arctan over its entire domain, giving the period of tan)
- https://oeis.org/A000796 A000796 – OEIS
- Book: Arndt . Jörg . Haenel. Christoph . π Unleashed . Springer-Verlag Berlin Heidelberg . 2001. 978-3-540-66572-4. page 126
- Web site: Computation of the n-th decimal digit of π with low memory. Gourdon. Xavier. Numbers, constants and computation. 1.
- http://mathworld.wolfram.com/PiFormulas.html Weisstein, Eric W. "Pi Formulas", MathWorld
- Book: Chrystal . G. . Algebra, an Elementary Text-book: Part II . 1900 . 335.
- Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 112
- Book: Cooper . Shaun . Ramanujan's Theta Functions . Springer . 2017 . First . 978-3-319-56171-4. (page 647)
- Book: Euler . Leonhard . Introductio in analysin infinitorum . 1. Latin. 1748. p. 245
- [Carl B. Boyer]
- Book: Euler . Leonhard . Introductio in analysin infinitorum . 1. Latin. 1748. p. 244
- Web site: Wästlund . Johan . Summing inverse squares by euclidean geometry. The paper gives the formula with a minus sign instead, but these results are equivalent.
- Web site: The world of Pi . Simon Plouffe / David Bailey . Pi314.net . 2011-01-29.
Web site: Collection of series for . Numbers.computation.free.fr . 2011-01-29.
- Book: Rudin . Walter. Walter Rudin. Real and Complex Analysis . McGraw-Hill Book Company . 1987 . Third . 0-07-100276-6. p. 3
- Book: Loya . Paul . Amazing and Aesthetic Aspects of Analysis . Springer . 2017 . 978-1-4939-6793-3. 589.
- Book: Perron . Oskar . German . Oskar Perron. Die Lehre von den Kettenbrüchen: Band II . B. G. Teubner . 1957 . Third. p. 36, eq. 24
- Vellucci. Pierluigi. Bersani. Alberto Maria. 2019-12-01. $$\pi $$-Formulas and Gray code. Ricerche di Matematica. en. 68. 2. 551–569. 10.1007/s11587-018-0426-4. 1606.09597 . 119578297 . 1827-3491.
- Abrarov. Sanjar M.. Siddiqui. Rehan. Jagpal. Rajinder K.. Quine. Brendan M.. 2021-09-04. Algorithmic Determination of a Large Integer in the Two-Term Machin-like Formula for π . Mathematics. en. 9. 17. 2162. 10.3390/math9172162 . 2107.01027 . free .
- Book: Arndt . Jörg . Haenel. Christoph . π Unleashed . Springer-Verlag Berlin Heidelberg . 2001. 978-3-540-66572-4. page 49
- Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 2
- The coefficients can be obtained by reversing the Puiseux series of
z\mapsto
| infty |
\sqrt{z}\dfrac{\sum | |
| n=0 |
}at
.
- Book: Borwein . Jonathan M. . Borwein. Peter B. . Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity . Wiley-Interscience . 1987 . First . 0-471-83138-7. page 225
- Web site: The Arithmetic-Geometric Mean of Gauss. Gilmore. Tomack. Universität Wien. 13.
- The
th root with the smallest positive principal argument is chosen.
- Book: https://link.springer.com/chapter/10.1007/978-1-4757-3240-5_62. Borwein. J.. Borwein. P.. Pi: A Source Book . Ramanujan and Pi . Springer Link. 2000 . 588–595 . 10.1007/978-1-4757-3240-5_62 . 978-1-4757-3242-9 .
- When
, this gives algebraic approximations to Gelfond's constant
.
- Book: Eymard . Pierre . Lafon. Jean-Pierre . The Number Pi . American Mathematical Society . 2004 . 0-8218-3246-8. p. 248
- When
, this gives algebraic approximations to Gelfond's constant
.