This article summarizes equations in the theory of gravitation.
A common misconception occurs between centre of mass and centre of gravity. They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts. They are equal if and only if the external gravitational field is uniform.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Centre of gravity | rcog (symbols vary) | ith moment of mass mi=rimi Centre of gravity for a set of discrete masses: \begin{align}rcog&=
\sumimi\left | \mathbf \left (\mathbf_i \right) \right | \\ & = \frac\sum_i \mathbf_i m_i \left | \mathbf \left (\mathbf_i \right) \right | \end\,\! Centre of gravity for a continuum of mass: \begin{align}rcog&=
\int\left | \mathbf \left (\mathbf \right) \right | \mathrm\mathbf \\ & = \frac\int \mathbf \left | \mathbf \left (\mathbf \right) \right | \mathrm^n m \\ & = \frac\int \mathbf \rho_n \left | \mathbf \left (\mathbf \right) \right | \mathrm^n x \end \,\! | m | [L] | ||||||
Standard gravitational parameter of a mass | μ | \mu=Gm | N m2 kg−1 | [L]3 [T]−2 | ||||||||||||||||
See main article: Newtonian gravitation.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gravitational field, field strength, potential gradient, acceleration | g | g=F/m | N kg−1 = m s−2 | [L][T]−2 | ||||||||||||||||||
Gravitational flux | ΦG | \PhiG=\intSg ⋅ dA | m3 s−2 | [L]3[T]−2 | ||||||||||||||||||
Absolute gravitational potential | Φ, φ, U, V | U=-
=-
F ⋅ dr=-
g ⋅ dr | J kg−1 | [L]2[T]−2 | ||||||||||||||||||
Gravitational potential difference | ΔΦ, Δφ, ΔU, ΔV | \DeltaU=-
=-
F ⋅ dr=-
g ⋅ dr | J kg−1 | [L]2[T]−2 | ||||||||||||||||||
Gravitational potential energy | Ep | Ep=-Winfty | J | [M][L]2[T]−2 | ||||||||||||||||||
Gravitational torsion field | Ω | \boldsymbol{\Omega}=2\boldsymbol{\xi} | Hz = s−1 | [T]−1 | ||||||||||||||||||
In the weak-field and slow motion limit of general relativity, the phenomenon of gravitoelectromagnetism (in short "GEM") occurs, creating a parallel between gravitation and electromagnetism. The gravitational field is the analogue of the electric field, while the gravitomagnetic field, which results from circulations of masses due to their angular momentum, is the analogue of the magnetic field.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Gravitational torsion flux | ΦΩ | \Phi\Omega=\intS\boldsymbol{\Omega} ⋅ dA | N m s kg−1 = m2 s−1 | [M]2 [T]−1 |
Gravitomagnetic field | H, Bg, B, ξ | F=m\left(v x 2\boldsymbol{\xi}\right) | Hz = s−1 | [T]−1 |
Gravitomagnetic flux | Φξ | \Phi\xi=\intS\boldsymbol{\xi} ⋅ dA | N m s kg−1 = m2 s−1 | [M]2 [T]−1 |
Gravitomagnetic vector potential | h | \xi=\nabla x h | m s−1 | [M] [T]−1 |
See also: Spherical polar coordinates.
It can be shown that a uniform spherically symmetric mass distribution generates an equivalent gravitational field to a point mass, so all formulae for point masses apply to bodies which can be modelled in this way.
Physical situation | Nomenclature | Equations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Gravitational potential gradient and field |
| g=-\nablaU \DeltaU=-\intCg ⋅ dr | |||||||||
Point mass | g=
\hat{r | ||||||||||
At a point in a local array of point masses | g=\sumigi=G\sumi
\hat{r | ||||||||||
Gravitational torque and potential energy due to non-uniform fields and mass moments |
| \boldsymbol{\tau}=
dm x g U=
dm ⋅ g\ | |||||||||
Gravitational field for a rotating body | \phi \hat{a | g=-
\hat{r | \boldsymbol \right | ^2\left | \mathbf \right | \sin \phi)\mathbf \,\! | |||||
General classical equations.
Physical situation | Nomenclature | Equations | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Potential energy from gravity, integral from Newton's law | U=-
≈ m\left | \mathbf \right | y\,\! | |||||||
Escape speed |
| v=\sqrt{
| ||||||||
Orbital energy |
| \begin{align}E&=T+U\ &=-
+
m\left | \mathbf \right | ^2 \\& = m \left (- \frac + \frac \right) \\& = - \frac \end \,\! | ||||||