List of equations in fluid mechanics explained

This article summarizes equations in the theory of fluid mechanics.

Definitions

Here

\hat{t

} \,\! is a unit vector in the direction of the flow/current/flux.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Flow velocity vector fieldu

u=u\left(r,t\right)

m s−1 [L][T]−1
Velocity pseudovector fieldω

\boldsymbol{\omega}=\nabla x v

s−1 [T]−1
Volume velocity, volume fluxφV (no standard symbol)

\phiV=\intSudA

m3 s−1[L]3 [T]−1
Mass current per unit volumes (no standard symbol)

s=d\rho/dt

kg m-3 s−1[M] [L]-3 [T]−1
Mass current, mass flow rateIm

Im=dm/dt

kg s−1 [M][T]−1
Mass current density jm

Im=\iintjmdS

kg m−2 s−1 [M][L]−2[T]−1
Momentum current Ip

Ip=d\left

\mathbf \right /\mathrm t \,\! kg m s−2 [M][L][T]−2
Momentum current density jp

Ip=\iintjpdS

kg m s−2 [M][L][T]−2

Equations

Physical situationNomenclatureEquations
Fluid statics,
pressure gradient
    • r = Position
    • ρ = ρ(r) = Fluid density at gravitational equipotential containing r
    • g = g(r) = Gravitational field strength at point r
    • P = Pressure gradient

    \nablaP=\rhog

    Buoyancy equations
      • ρf = Mass density of the fluid
      • Vimm = Immersed volume of body in fluid
      • Fb = Buoyant force
      • Fg = Gravitational force
      • Wapp = Apparent weight of immersed body
      • W = Actual weight of immersed body
      Buoyant force

      Fb=-\rhofVimmg=-Fg

      Apparent weight

      Wapp=W-Fb\

      Bernoulli's equationpconstant is the total pressure at a point on a streamline

      p+\rhou2/2+\rhogy=pconstant

      Euler equations

        denotes the tensor product
        \partial\rho
        \partialt

        +\nabla(\rhou)=0


        \partial\rho{u
        } + \nabla \cdot \left (\mathbf\otimes \left (\rho \mathbf \right) \right)+\nabla p=0\,\

        \partialE
        \partialt

        +\nabla\left(u\left(E+p\right)\right)=0


        E=\rho\left(U+

        1
        2

        u2\right)\

        Convective acceleration

        a=\left(u\nabla\right)u

        Navier–Stokes equations

          f

          = volume density of the body forces acting on the fluid

          \nabla

          here is the del operator.

          \rho\left(

          \partialu
          \partialt

          +u\nablau\right)=-\nablap+\nablaTD+f

          See also

          Sources

          Further reading