List of electromagnetism equations explained

This article summarizes equations in the theory of electromagnetism.

Definitions

Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by qm(Wb) = μ0 qm(Am).

Initial quantities

Quantity (common name/s)(Common) symbol/sSI unitsDimension
Electric chargeqe, q, QC = As[I][T]
Monopole strength, magnetic chargeqm, g, pWb or Am[L]2[M][T]−2 [I]−1 (Wb)
[I][L] (Am)

Electric quantities

Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues.

Electric transport

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Linear, surface, volumetric charge densityλe for Linear, σe for surface, ρe for volume.

qe=\intλed\ell

qe=\iint\sigmaedS

qe=\iiint\rhoedV

C m-n, n = 1, 2, 3 [I][T][L]-n
CapacitanceC

C=dq/dV

V = voltage, not volume.
F = C V-1[I]2[T]4[L]-2[M]-1
Electric currentI

I=dq/dt

A[I]
Electric current densityJ

I=JdS

A m-2[I][L]-2
Displacement current densityJd

Jd=\epsilon0\left(\partialE/\partialt\right)=\partialD/\partialt

A m-2[I][L]-2
Convection current densityJc

Jc=\rhov

A m−2[I][L]−2

Electric fields

Quantity (common name/s)(Common) symbol/sDefining equation SI unitsDimension
Electric field, field strength, flux density, potential gradientE

E=F/q

N C−1 = V m−1[M][L][T]−3[I]−1
Electric fluxΦE

\PhiE=\intSEdA

N m2 C−1[M][L]3[T]−3[I]−1
Absolute permittivity;ε

\epsilon=\epsilonr\epsilon0

F m−1[I]2 [T]4 [M]−1 [L]−3
Electric dipole momentp

p=qa

a = charge separationdirected from -ve to +ve charge

C m[I][T][L]
Electric Polarization, polarization densityP

P=d\langlep\rangle/dV

C m−2[I][T][L]−2
Electric displacement field, flux densityD

D=\epsilonE=\epsilon0E+P

C m−2[I][T][L]−2
Electric displacement fluxΦD

\PhiD=\intSDdA

C[I][T]
Absolute electric potential, EM scalar potential relative to point

r0

Theoretical:

r0=infty\


Practical:

r0=Rearth

(Earth's radius)
φ,V

V=-

Winfty
q

=-

1
q
r
\int
infty

Fdr=

r2
-\int
r1

Edr

V = J C−1[M] [L]2 [T]−3 [I]−1
Voltage, Electric potential differenceΔφV

\DeltaV=-

\DeltaW
q

=-

1
q
r2
\int
r1

Fdr=

r2
-\int
r1

Edr

V = J C−1[M] [L]2 [T]−3 [I]−1

Magnetic quantities

Magnetic transport

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Linear, surface, volumetric pole densityλm for Linear, σm for surface, ρm for volume.

qm=\intλmd\ell

qm=\iint\sigmamdS

qm=\iiint\rhomdV

Wb m-n
A m(-n + 1),
n = 1, 2, 3
[L]2[M][T]−2 [I]−1 (Wb)
[I][L] (Am)
Monopole currentIm

Im=dqm/dt

Wb s-1
A m s-1
[L]2[M][T]-3 [I]-1 (Wb)
[I][L][T]-1 (Am)
Monopole current densityJm

I=\iintJmdA

Wb s-1 m-2
A m-1 s-1
[M][T]-3 [I]-1 (Wb)
[I][L]-1[T]-1 (Am)

Magnetic fields

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Magnetic field, field strength, flux density, induction fieldB

F=qe\left(v x B\right)

T = N A−1 m−1 = Wb m−2[M][T]−2[I]−1
Magnetic potential, EM vector potential A

B=\nabla x A

T m = N A−1 = Wb m3[M][L][T]−2[I]−1
Magnetic fluxΦB

\PhiB=\intSBdA

Wb = T m2[L]2[M][T]−2[I]−1
Magnetic permeability

\mu

\mu =\mur\mu0

V·s·A-1·m-1 = N·A-2 = T·m·A-1 = Wb·A-1·m-1[M][L][T]−2[I]−2
Magnetic moment, magnetic dipole momentm, μB, ΠTwo definitions are possible:

using pole strengths,

m=qma

using currents:

m=NIA\hat{n

}\,\

a = pole separation

N is the number of turns of conductor

A m2[I][L]2
MagnetizationM

M=d\langlem\rangle/dV

A m−1[I] [L]−1
Magnetic field intensity, (AKA field strength)HTwo definitions are possible:

most common:

B=\muH=\mu0\left(H+M\right)

using pole strengths,[1]

H=F/qm

A m−1[I] [L]−1
Intensity of magnetization, magnetic polarizationI, J

I=\mu0M

T = N A−1 m−1 = Wb m−2[M][T]−2[I]−1
Self InductanceLTwo equivalent definitions are possible:

L=N\left(d\Phi/dI\right)

L\left(dI/dt\right)=-NV\

H = Wb A−1[L]2 [M] [T]−2 [I]−2
Mutual inductanceMAgain two equivalent definitions are possible:

M1=N\left(d\Phi2/dI1\right)

M\left(dI2/dt\right)=-NV1\

1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through each other. They can be interchanged for the required conductor/inductor;

M2=N\left(d\Phi1/dI2\right)


M\left(dI1/dt\right)=-NV2\

H = Wb A−1[L]2 [M] [T]−2 [I]−2
Gyromagnetic ratio (for charged particles in a magnetic field) γ

\omega=\gammaB

Hz T−1[M]−1[T][I]

Electric circuits

DC circuits, general definitions

See main article: Direct current.

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Terminal Voltage forPower SupplyVterV = J C−1[M] [L]2 [T]−3 [I]−1
Load Voltage for CircuitVloadV = J C−1[M] [L]2 [T]−3 [I]−1
Internal resistance of power supplyRint

Rint=Vter/I

Ω = V A−1 = J s C−2[M][L]2 [T]−3 [I]−2
Load resistance of circuitRext

Rext=Vload/I

Ω = V A−1 = J s C−2[M][L]2 [T]−3 [I]−2
Electromotive force (emf), voltage across entire circuit including power supply, external components and conductorsE

l{E}=Vter+Vload

V = J C−1[M] [L]2 [T]−3 [I]−1

AC circuits

See main article: Alternating current and Resonance.

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Resistive load voltageVR

VR=IRR

V = J C−1[M] [L]2 [T]−3 [I]−1
Capacitive load voltageVC

VC=ICXC

V = J C−1[M] [L]2 [T]−3 [I]−1
Inductive load voltageVL

VL=ILXL

V = J C−1[M] [L]2 [T]−3 [I]−1
Capacitive reactanceXC

XC=

1
\omegadC

Ω−1 m−1[I]2 [T]3 [M]−2 [L]−2
Inductive reactanceXL

XL=\omegadL

Ω−1 m−1[I]2 [T]3 [M]−2 [L]−2
AC electrical impedanceZ

V=IZ

Z=\sqrt{R2+\left(XL-XC\right)2}\

Ω−1 m−1[I]2 [T]3 [M]−2 [L]−2
Phase constantδ, φ

\tan\phi=

XL-XC
R

dimensionlessdimensionless
AC peak currentI0

I0=Irms\sqrt{2}

A[I]
AC root mean square currentIrms

Irms=\sqrt{

1
T
T
\int
0

\left[I\left(t\right)\right]2dt}

A[I]
AC peak voltageV0

V0=Vrms\sqrt{2}

V = J C−1[M] [L]2 [T]−3 [I]−1
AC root mean square voltageVrms

Vrms=\sqrt{

1
T
T
\int
0

\left[V\left(t\right)\right]2dt}

V = J C−1[M] [L]2 [T]−3 [I]−1
AC emf, root mean square

l{E}rms,\sqrt{\langlel{E}\rangle}

l{E}rms=l{E}m/\sqrt{2}

V = J C−1[M] [L]2 [T]−3 [I]−1
AC average power

\langleP\rangle

\langleP\rangle=l{E}Irms\cos\phi

W = J s−1[M] [L]2 [T]−3
Capacitive time constantτC

\tauC=RC

s[T]
Inductive time constantτL

\tauL=L/R

s[T]

Magnetic circuits

See main article: Magnetic circuits.

Electromagnetism

Electric fields

General Classical Equations

Physical situation Equations
Electric potential gradient and field

E=-\nablaV

\DeltaV=

r2
-\int
r1

Edr

Point charge

E=

q
4\pi\epsilon0\left|r\right|2

\hat{r

} \,\!
At a point in a local array of point charges

E=\sumEi=

1
4\pi\epsilon0

\sumi

qi
\left|ri-r\right|2

\hat{r

}_i \,\!
At a point due to a continuum of charge

E=

1
4\pi\epsilon0

\intV

r\rhodV
\left|r\right|3

Electrostatic torque and potential energy due to non-uniform fields and dipole moments

\boldsymbol{\tau}=\intVdp x E

U=-\intVdpE

Magnetic fields and moments

See also: Magnetic moment.

General classical equations

Physical situation Equations
Magnetic potential, EM vector potential

B=\nabla x A

Due to a magnetic moment

A=

\mu0
4\pi
m x r
\left|r\right|3

B({r

})=\nabla\times=\frac\left(\frac-\frac\right)
Magnetic moment due to a current distribution

m=

1
2

\intVr x JdV

Magnetostatic torque and potential energy due to non-uniform fields and dipole moments

\boldsymbol{\tau}=\intVdm x B

U=-\intVdmB

Electric circuits and electronics

Below N = number of conductors or circuit components. Subscript net refers to the equivalent and resultant property value.

Physical situation NomenclatureSeriesParallel
Resistors and conductors
    • Ri = resistance of resistor or conductor i
    • Gi = conductance of resistor or conductor i

    Rnet=

    N
    \sum
    i=1

    Ri

    {1\overGnet

    } = \sum_^ \,\

    {1\overRnet

    } = \sum_^ \,\!

    Gnet=

    N
    \sum
    i=1

    Gi\

    Charge, capacitors, currents
      • Ci = capacitance of capacitor i
      • qi = charge of charge carrier i

      qnet=

      N
      \sum
      i=1

      qi

      {1\overCnet

      } = \sum_^N \,\

      Inet=Ii

      qnet=

      N
      \sum
      i=1

      qi

      Cnet=

      N
      \sum
      i=1

      Ci\

      Inet=

      N
      \sum
      i=1

      Ii

      Inductors
        • Li = self-inductance of inductor i
        • Lij = self-inductance element ij of L matrix
        • Mij = mutual inductance between inductors i and j

        Lnet=

        N
        \sum
        i=1

        Li

        {1\overLnet

        } = \sum_^N \,\!

        Vi=

        N
        \sum
        j=1

        Lij

        dIj
        dt

        \

        Circuit DC Circuit equations AC Circuit equations+Series circuit equations
        RC circuitsCircuit equation

        R

        dq
        dt

        +

        q
        C

        =l{E}

        Capacitor charge

        q=Cl{E}\left(1-e-t/RC\right)\

        Capacitor discharge

        q=Cl{E}e-t/RC

        RL circuitsCircuit equation
        LdI
        dt

        +RI=l{E}

        Inductor current rise

        I=

        l{E
        }\left (1-e^\right)\,\

        Inductor current fall

        I=l{E
        }e^=I_0e^\,\!
        LC circuitsCircuit equation
        Ld2q
        dt2

        +q/C=l{E}

        Circuit equation
        Ld2q
        dt2

        +q/C=l{E}\sin\left(\omega0t+\phi\right)

        Circuit resonant frequency

        \omegares=1/\sqrt{LC}\

        Circuit charge

        q=q0\cos(\omegat+\phi)

        Circuit current

        I=-\omegaq0\sin(\omegat+\phi)\

        Circuit electrical potential energy

        2/2C=Q
        U
        E=q

        2\cos2(\omegat+\phi)/2C

        Circuit magnetic potential energy

        2\sin
        U
        B=Q

        2(\omegat+\phi)/2C\

        RLC CircuitsCircuit equation
        Ld2q
        dt2

        +R

        dq
        dt

        +

        q
        C

        =l{E}

        Circuit equation
        Ld2q
        dt2

        +R

        dq
        dt

        +

        q
        C

        =l{E}\sin\left(\omega0t+\phi\right)

        Circuit charge

        q=q0eT-Rt/2L\cos(\omega't+\phi)\

        See also

        Sources

        Further reading

        Notes and References

        1. Book: Understanding Physics. 2nd . M. Mansfield . C. O'Sullivan . John Wiley & Sons. 2011. 978-0-470-74637-0.