This article summarizes equations in the theory of electromagnetism.
Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by qm(Wb) = μ0 qm(Am).
Quantity (common name/s) | (Common) symbol/s | SI units | Dimension |
---|---|---|---|
Electric charge | qe, q, Q | C = As | [I][T] |
Monopole strength, magnetic charge | qm, g, p | Wb or Am | [L]2[M][T]−2 [I]−1 (Wb) [I][L] (Am) |
Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues.
Electric transport
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Linear, surface, volumetric charge density | λe for Linear, σe for surface, ρe for volume. | qe=\intλed\ell qe=\iint\sigmaedS qe=\iiint\rhoedV | C m-n, n = 1, 2, 3 | [I][T][L]-n |
Capacitance | C | C=dq/dV | F = C V-1 | [I]2[T]4[L]-2[M]-1 |
Electric current | I | I=dq/dt | A | [I] |
Electric current density | J | I=J ⋅ dS | A m-2 | [I][L]-2 |
Displacement current density | Jd | Jd=\epsilon0\left(\partialE/\partialt\right)=\partialD/\partialt | A m-2 | [I][L]-2 |
Convection current density | Jc | Jc=\rhov | A m−2 | [I][L]−2 |
Electric fields
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electric field, field strength, flux density, potential gradient | E | E=F/q | N C−1 = V m−1 | [M][L][T]−3[I]−1 | |||||||||||||||||||
Electric flux | ΦE | \PhiE=\intSE ⋅ dA | N m2 C−1 | [M][L]3[T]−3[I]−1 | |||||||||||||||||||
Absolute permittivity; | ε | \epsilon=\epsilonr\epsilon0 | F m−1 | [I]2 [T]4 [M]−1 [L]−3 | |||||||||||||||||||
Electric dipole moment | p | p=qa a = charge separationdirected from -ve to +ve charge | C m | [I][T][L] | |||||||||||||||||||
Electric Polarization, polarization density | P | P=d\langlep\rangle/dV | C m−2 | [I][T][L]−2 | |||||||||||||||||||
Electric displacement field, flux density | D | D=\epsilonE=\epsilon0E+P | C m−2 | [I][T][L]−2 | |||||||||||||||||||
Electric displacement flux | ΦD | \PhiD=\intSD ⋅ dA | C | [I][T] | |||||||||||||||||||
Absolute electric potential, EM scalar potential relative to point r0 Theoretical: r0=infty\ | Practical: r0=Rearth | φ,V | V=-
=-
F ⋅ dr=
E ⋅ dr | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | ||||||||||||||||||
Voltage, Electric potential difference | Δφ,ΔV | \DeltaV=-
=-
F ⋅ dr=
E ⋅ dr | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||||||||||||
Magnetic transport
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Linear, surface, volumetric pole density | λm for Linear, σm for surface, ρm for volume. | qm=\intλmd\ell qm=\iint\sigmamdS qm=\iiint\rhomdV | Wb m-n A m(-n + 1), n = 1, 2, 3 | [L]2[M][T]−2 [I]−1 (Wb) [I][L] (Am) |
Monopole current | Im | Im=dqm/dt | Wb s-1 A m s-1 | [L]2[M][T]-3 [I]-1 (Wb) [I][L][T]-1 (Am) |
Monopole current density | Jm | I=\iintJm ⋅ dA | Wb s-1 m-2 A m-1 s-1 | [M][T]-3 [I]-1 (Wb) [I][L]-1[T]-1 (Am) |
Magnetic fields
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | ||
---|---|---|---|---|---|---|
Magnetic field, field strength, flux density, induction field | B | F=qe\left(v x B\right) | T = N A−1 m−1 = Wb m−2 | [M][T]−2[I]−1 | ||
Magnetic potential, EM vector potential | A | B=\nabla x A | T m = N A−1 = Wb m3 | [M][L][T]−2[I]−1 | ||
Magnetic flux | ΦB | \PhiB=\intSB ⋅ dA | Wb = T m2 | [L]2[M][T]−2[I]−1 | ||
Magnetic permeability | \mu | \mu =\mur\mu0 | V·s·A-1·m-1 = N·A-2 = T·m·A-1 = Wb·A-1·m-1 | [M][L][T]−2[I]−2 | ||
Magnetic moment, magnetic dipole moment | m, μB, Π | Two definitions are possible: using pole strengths, m=qma using currents: m=NIA\hat{n | a = pole separation N is the number of turns of conductor | A m2 | [I][L]2 | |
Magnetization | M | M=d\langlem\rangle/dV | A m−1 | [I] [L]−1 | ||
Magnetic field intensity, (AKA field strength) | H | Two definitions are possible: most common: B=\muH=\mu0\left(H+M\right) using pole strengths,[1] H=F/qm | A m−1 | [I] [L]−1 | ||
Intensity of magnetization, magnetic polarization | I, J | I=\mu0M | T = N A−1 m−1 = Wb m−2 | [M][T]−2[I]−1 | ||
Self Inductance | L | Two equivalent definitions are possible: L=N\left(d\Phi/dI\right) L\left(dI/dt\right)=-NV\ | H = Wb A−1 | [L]2 [M] [T]−2 [I]−2 | ||
Mutual inductance | M | Again two equivalent definitions are possible: M1=N\left(d\Phi2/dI1\right) M\left(dI2/dt\right)=-NV1\ | 1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through each other. They can be interchanged for the required conductor/inductor; M2=N\left(d\Phi1/dI2\right) M\left(dI1/dt\right)=-NV2\ | H = Wb A−1 | [L]2 [M] [T]−2 [I]−2 | |
Gyromagnetic ratio (for charged particles in a magnetic field) | γ | \omega=\gammaB | Hz T−1 | [M]−1[T][I] | ||
DC circuits, general definitions
See main article: Direct current.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Terminal Voltage forPower Supply | Vter | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |
Load Voltage for Circuit | Vload | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |
Internal resistance of power supply | Rint | Rint=Vter/I | Ω = V A−1 = J s C−2 | [M][L]2 [T]−3 [I]−2 |
Load resistance of circuit | Rext | Rext=Vload/I | Ω = V A−1 = J s C−2 | [M][L]2 [T]−3 [I]−2 |
Electromotive force (emf), voltage across entire circuit including power supply, external components and conductors | E | l{E}=Vter+Vload | V = J C−1 | [M] [L]2 [T]−3 [I]−1 |
AC circuits
See main article: Alternating current and Resonance.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Resistive load voltage | VR | VR=IRR | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||
Capacitive load voltage | VC | VC=ICXC | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||
Inductive load voltage | VL | VL=ILXL | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||
Capacitive reactance | XC | XC=
| Ω−1 m−1 | [I]2 [T]3 [M]−2 [L]−2 | |||||||||
Inductive reactance | XL | XL=\omegadL | Ω−1 m−1 | [I]2 [T]3 [M]−2 [L]−2 | |||||||||
AC electrical impedance | Z | V=IZ Z=\sqrt{R2+\left(XL-XC\right)2}\ | Ω−1 m−1 | [I]2 [T]3 [M]−2 [L]−2 | |||||||||
Phase constant | δ, φ | \tan\phi=
| dimensionless | dimensionless | |||||||||
AC peak current | I0 | I0=Irms\sqrt{2} | A | [I] | |||||||||
AC root mean square current | Irms | Irms=\sqrt{
\left[I\left(t\right)\right]2dt} | A | [I] | |||||||||
AC peak voltage | V0 | V0=Vrms\sqrt{2} | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||
AC root mean square voltage | Vrms | Vrms=\sqrt{
\left[V\left(t\right)\right]2dt} | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||
AC emf, root mean square | l{E}rms,\sqrt{\langlel{E}\rangle} | l{E}rms=l{E}m/\sqrt{2} | V = J C−1 | [M] [L]2 [T]−3 [I]−1 | |||||||||
AC average power | \langleP\rangle | \langleP\rangle=l{E}Irms\cos\phi | W = J s−1 | [M] [L]2 [T]−3 | |||||||||
Capacitive time constant | τC | \tauC=RC | s | [T] | |||||||||
Inductive time constant | τL | \tauL=L/R | s | [T] | |||||||||
See main article: Magnetic circuits.
General Classical Equations
Physical situation | Equations | ||||||
---|---|---|---|---|---|---|---|
Electric potential gradient and field | E=-\nablaV \DeltaV=
E ⋅ dr | ||||||
Point charge | E=
\hat{r | ||||||
At a point in a local array of point charges | E=\sumEi=
\sumi
\hat{r | ||||||
At a point due to a continuum of charge | E=
\intV
| ||||||
Electrostatic torque and potential energy due to non-uniform fields and dipole moments | \boldsymbol{\tau}=\intVdp x E U=-\intVdp ⋅ E | ||||||
See also: Magnetic moment.
General classical equations
Physical situation | Equations | ||||||
---|---|---|---|---|---|---|---|
Magnetic potential, EM vector potential | B=\nabla x A | ||||||
Due to a magnetic moment | A=
B({r | ||||||
Magnetic moment due to a current distribution | m=
\intVr x JdV | ||||||
Magnetostatic torque and potential energy due to non-uniform fields and dipole moments | \boldsymbol{\tau}=\intVdm x B U=-\intVdm ⋅ B | ||||||
Below N = number of conductors or circuit components. Subscript net refers to the equivalent and resultant property value.
Physical situation | Nomenclature | Series | Parallel | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Resistors and conductors |
| Rnet=
Ri {1\overGnet | {1\overRnet Gnet=
Gi\ | ||||||||||||||||||||||||||
Charge, capacitors, currents |
| qnet=
qi {1\overCnet | Inet=Ii | qnet=
qi Cnet=
Ci\ | Inet=
Ii | ||||||||||||||||||||||||
Inductors |
| Lnet=
Li | {1\overLnet Vi=
Lij
\ | ||||||||||||||||||||||||||
Circuit | DC Circuit equations | AC Circuit equations | +Series circuit equations | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RC circuits | Circuit equation R
+
=l{E} Capacitor charge q=Cl{E}\left(1-e-t/RC\right)\ | Capacitor discharge q=Cl{E}e-t/RC | |||||||||||||||||||||
RL circuits | Circuit equation
+RI=l{E} Inductor current rise I=
| Inductor current fall
| |||||||||||||||||||||
LC circuits | Circuit equation
+q/C=l{E} | Circuit equation
+q/C=l{E}\sin\left(\omega0t+\phi\right) Circuit resonant frequency \omegares=1/\sqrt{LC}\ | Circuit charge q=q0\cos(\omegat+\phi) Circuit current I=-\omegaq0\sin(\omegat+\phi)\ | Circuit electrical potential energy
2\cos2(\omegat+\phi)/2C Circuit magnetic potential energy
2(\omegat+\phi)/2C\ | |||||||||||||||||||
RLC Circuits | Circuit equation
+R
+
=l{E} | Circuit equation
+R
+
=l{E}\sin\left(\omega0t+\phi\right) Circuit charge q=q0eT-Rt/2L\cos(\omega't+\phi)\ | |||||||||||||||||||||