List of Wenninger polyhedron models explained

This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.

The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes. It contains the 75 nonprismatic uniform polyhedra, as well as 44 stellated forms of the convex regular and quasiregular polyhedra.

Models listed here can be cited as "Wenninger Model Number N", or WN for brevity.

The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.

Platonic solids (regular convex polyhedra) W1 to W5

IndexNamePictureDual nameDual pictureWythoff symbolVertex figure
and Schläfli symbol
Symmetry groupU#K#VEFFaces by type
13|2 3
TdU01K064644
2Hexahedron4|2 3
OhU05K1061288
3Hexahedron (Cube) 3|2 4
OhU06K1181266
4Dodecahedron5|2 3
IhU22K2712302020
5Dodecahedron3|2 5
IhU23K2820301212

Archimedean solids (Semiregular) W6 to W18

IndexNamePictureDual nameDual pictureWythoff symbolVertex figureSymmetry groupU#K#VEFFaces by type
6Truncated tetrahedron2 3|3
3.6.6
TdU02K07121884 + 4
7Truncated octahedrontetrakis hexahedron2 4|3
4.6.6
OhU08K131436246 + 8
8Truncated hexahedron2 3|4
3.8.8
OhU09K142436148 + 6
9Truncated icosahedron2 5|3
5.6.6
IhU25K3060903212 + 20
10Truncated dodecahedron2 3|5
3.10.10
IhU26K3160903220 + 12
11Cuboctahedron2|3 4
3.4.3.4
OhU07K121224148 + 6
12Icosidodecahedron2|3 5
3.5.3.5
IhU24K2930603220 + 12
13Small rhombicuboctahedrondeltoidal icositetrahedron3 4|2
3.4.4.4
OhU10K152448268+(6+12)
14Small rhombicosidodecahedron3 5|2
3.4.5.4
IhU27K32601206220 + 30 + 12
15Truncated cuboctahedron
(Great rhombicuboctahedron)
disdyakis dodecahedron2 3 4|
4.6.8
OhU11K1648722612 + 8 + 6
16Truncated icosidodecahedron
(Great rhombicosidodecahedron)
disdyakis triacontahedron2 3 5|
4.6.10
IhU28K331201806230 + 20 + 12
17Snub cube|2 3 4
3.3.3.3.4
OU12K17246038(8 + 24) + 6
18Snub dodecahedron|2 3 5
3.3.3.3.5
IU29K346015092(20 + 60) + 12

Kepler - Poinsot polyhedra (Regular star polyhedra) W20, W21, W22 and W41

IndexNamePictureDual nameDual pictureWythoff symbolVertex figure
and Schläfli symbol
Symmetry groupU#K#VEFFaces by type
20Small stellated dodecahedronGreat dodecahedron5|25/2
IhU34K3912301212
21Great dodecahedronSmall stellated dodecahedron5/2|2 5
IhU35K4012301212
22Great stellated dodecahedronGreat icosahedron3|25/2
IhU52K5720301212
41Great icosahedron
(16th stellation of icosahedron)
Great stellated dodecahedron5/2|2 3
IhU53K5812302020

Stellations: models W19 to W66

Stellations of octahedron

IndexNameSymmetry groupPictureFacets
2Octahedron
(regular)
Oh
19Stellated octahedron
(Compound of two tetrahedra)
Oh

Stellations of dodecahedron

IndexNameSymmetry groupPictureFacets
5Dodecahedron (regular)Ih
20Small stellated dodecahedron (regular)
(First stellation of dodecahedron)
Ih
21Great dodecahedron (regular)
(Second stellation of dodecahedron)
Ih
22Great stellated dodecahedron (regular)
(Third stellation of dodecahedron)
Ih

Stellations of icosidodecahedron

Uniform nonconvex solids W67 to W119

IndexNamePictureDual nameDual pictureWythoff symbolVertex figureSymmetry groupU#K#VEFFaces by type
67TetrahemihexahedronTetrahemihexacron3/23|2
4.3/2.4.3
TdU04K0961274+3
68OctahemioctahedronOctahemioctacron3/23|3
6.3/2.6.3
OhU03K081224128+4
69Small cubicuboctahedronSmall hexacronic icositetrahedron3/24|4
8.3/2.8.4
OhU13K182448208+6+6
70Small ditrigonal icosidodecahedronSmall triambic icosahedron3|5/23
(5/2.3)3
IhU30K3520603220+12
71Small icosicosidodecahedronSmall icosacronic hexecontahedron5/23|3
6.5/2.6.3
IhU31K36601205220+12+20
72Small dodecicosidodecahedronSmall dodecacronic hexecontahedron3/25|5
10.3/2.10.5
IhU33K38601204420+12+12
73DodecadodecahedronMedial rhombic triacontahedron2|5/25
(5/2.5)2
IhU36K4130602412+12
74Small rhombidodecahedronSmall rhombidodecacron25/25|
10.4.10/9.4/3
IhU39K44601204230+12
75Truncated great dodecahedronSmall stellapentakis dodecahedron25/2|5
10.10.5/2
IhU37K4260902412+12
76RhombidodecadodecahedronMedial deltoidal hexecontahedron5/25|2
4.5/2.4.5
IhU38K43601205430+12+12
77Great cubicuboctahedronGreat hexacronic icositetrahedron3 4|4/3
8/3.3.8/3.4
OhU14K192448208+6+6
78CubohemioctahedronHexahemioctacron4/34|3
6.4/3.6.4
OhU15K201224106+4
79Cubitruncated cuboctahedron
(Cuboctatruncated cuboctahedron)
Tetradyakis hexahedron4/33 4|
8/3.6.8
OhU16K214872208+6+6
80Ditrigonal dodecadodecahedronMedial triambic icosahedron3|5/35
(5/3.5)3
IhU41K4620602412+12
81Great ditrigonal dodecicosidodecahedronGreat ditrigonal dodecacronic hexecontahedron3 5|5/3
10/3.3.10/3.5
IhU42K47601204420+12+12
82Small ditrigonal dodecicosidodecahedronSmall ditrigonal dodecacronic hexecontahedron5/33|5
10.5/3.10.3
IhU43K48601204420+12+12
83IcosidodecadodecahedronMedial icosacronic hexecontahedron5/35|3
6.5/3.6.5
IhU44K49601204412+12+20
84Icositruncated dodecadodecahedron
(Icosidodecatruncated icosidodecahedron)
Tridyakis icosahedron5/33 5|
10/3.6.10
IhU45K501201804420+12+12
85Nonconvex great rhombicuboctahedron
(Quasirhombicuboctahedron)
Great deltoidal icositetrahedron3/24|2
4.3/2.4.4
OhU17K222448268+(6+12)
86Small rhombihexahedronSmall rhombihexacron3/22 4|
4.8.4/3.8
OhU18K2324481812+6
87Great ditrigonal icosidodecahedronGreat triambic icosahedron3/2|3 5
(5.3.5.3.5.3)/2
IhU47K5220603220+12
88Great icosicosidodecahedronGreat icosacronic hexecontahedron3/25|3
6.3/2.6.5
IhU48K53601205220+12+20
89Small icosihemidodecahedronSmall icosihemidodecacron3/23|5
10.3/2.10.3
IhU49K5430602620+6
90Small dodecicosahedronSmall dodecicosacron3/23 5|
10.6.10/9.6/5
IhU50K55601203220+12
91Small dodecahemidodecahedronSmall dodecahemidodecacron5/45|5
10.5/4.10.5
IhU51K5630601812+6
92Stellated truncated hexahedron
(Quasitruncated hexahedron)
Great triakis octahedron2 3|4/3
8/3.8/3.3
OhU19K242436148+6
93Great truncated cuboctahedron
(Quasitruncated cuboctahedron)
Great disdyakis dodecahedron4/32 3|
8/3.4.6
OhU20K2548722612+8+6
94Great icosidodecahedronGreat rhombic triacontahedron2|5/23
(5/2.3)2
IhU54K5930603220+12
95Truncated great icosahedronGreat stellapentakis dodecahedron25/2|3
6.6.5/2
IhU55K6060903212+20
96RhombicosahedronRhombicosacron25/23|
6.4.6/5.4/3
IhU56K61601205030+20
97Small stellated truncated dodecahedron
(Quasitruncated small stellated dodecahedron)
Great pentakis dodecahedron2 5|5/3
10/3.10/3.5
IhU58K6360902412+12
98Truncated dodecadodecahedron
(Quasitruncated dodecahedron)
Medial disdyakis triacontahedron5/32 5|
10/3.4.10
IhU59K641201805430+12+12
99Great dodecicosidodecahedronGreat dodecacronic hexecontahedron5/23|5/3
10/3.5/2.10/3.3
IhU61K66601204420+12+12
100Small dodecahemicosahedronSmall dodecahemicosacron5/35/2|3
6.5/3.6.5/2
IhU62K6730602212+10
101Great dodecicosahedronGreat dodecicosacron5/35/23|
6.10/3.6/5.10/7
IhU63K68601203220+12
102Great dodecahemicosahedronGreat dodecahemicosacron5/45|3
6.5/4.6.5
IhU65K7030602212+10
103Great rhombihexahedronGreat rhombihexacron4/33/22|
4.8/3.4/3.8/5
OhU21K2624481812+6
104Great stellated truncated dodecahedron
(Quasitruncated great stellated dodecahedron)
Great triakis icosahedron2 3|5/3
10/3.10/3.3
IhU66K7160903220+12
105Nonconvex great rhombicosidodecahedron
(Quasirhombicosidodecahedron)
Great deltoidal hexecontahedron5/33|2
4.5/3.4.3
IhU67K72601206220+30+12
106Great icosihemidodecahedronGreat icosihemidodecacron3 3|5/3
10/3.3/2.10/3.3
IhU71K7630602620+6
107Great dodecahemidodecahedronGreat dodecahemidodecacron5/35/2|5/3
10/3.5/3.10/3.5/2
IhU70K7530601812+6
108Great truncated icosidodecahedron
(Great quasitruncated icosidodecahedron)
Great disdyakis triacontahedron5/32 3|
10/3.4.6
IhU68K731201806230+20+12
109Great rhombidodecahedronGreat rhombidodecacron3/25/32|
4.10/3.4/3.10/7
IhU73K78601204230+12
110Small snub icosicosidodecahedronSmall hexagonal hexecontahedron|5/23 3
3.3.3.3.3.5/2
IhU32K3760180112(40+60)+12
111Snub dodecadodecahedronMedial pentagonal hexecontahedron|25/25
3.3.5/2.3.5
IU40K45601508460+12+12
112Snub icosidodecadodecahedronMedial hexagonal hexecontahedron|5/33 5
3.3.3.3.5.5/3
IU46K5160180104(20+6)+12+12
113Great inverted snub icosidodecahedronGreat inverted pentagonal hexecontahedron|5/32 3
3.3.3.3.5/3
IU69K746015092(20+60)+12
114Inverted snub dodecadodecahedronMedial inverted pentagonal hexecontahedron|5/32 5
3.5/3.3.3.5
IU60K65601508460+12+12
115Great snub dodecicosidodecahedronGreat hexagonal hexecontahedron|5/35/23
3.5/3.3.5/2.3.3
IU64K6960180104(20+60)+(12+12)
116Great snub icosidodecahedronGreat pentagonal hexecontahedron|25/25/2
3.3.3.3.5/2
IU57K626015092(20+60)+12
117Great retrosnub icosidodecahedronGreat pentagrammic hexecontahedron|3/25/32
(3.3.3.3.5/2)/2
IU74K796015092(20+60)+12
118Small retrosnub icosicosidodecahedronSmall hexagrammic hexecontahedron|3/23/25/2
(3.3.3.3.3.5/2)/2
IhU72K7718060112(40+60)+12
119Great dirhombicosidodecahedronGreat dirhombicosidodecacron|3/25/335/2
(4.5/3.4.3.4.5/2.4.3/2)/2
IhU75K806024012440+60+24

See also

References

. Magnus Wenninger . Polyhedron Models . Cambridge University Press . 1974 . 0-521-09859-9 .

. Magnus Wenninger . Spherical Models . registration . Cambridge University Press . 1979 . 0-521-29432-0 .

External links