This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.
The book was written as a guide book to building polyhedra as physical models. It includes templates of face elements for construction and helpful hints in building, and also brief descriptions on the theory behind these shapes. It contains the 75 nonprismatic uniform polyhedra, as well as 44 stellated forms of the convex regular and quasiregular polyhedra.
Models listed here can be cited as "Wenninger Model Number N", or WN for brevity.
The polyhedra are grouped in 5 tables: Regular (1–5), Semiregular (6–18), regular star polyhedra (20–22,41), Stellations and compounds (19–66), and uniform star polyhedra (67–119). The four regular star polyhedra are listed twice because they belong to both the uniform polyhedra and stellation groupings.
Index | Name | Picture | Dual name | Dual picture | Wythoff symbol | Vertex figure and Schläfli symbol | Symmetry group | U# | K# | V | E | F | Faces by type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3|2 3 | Td | U01 | K06 | 4 | 6 | 4 | 4 | ||||||
2 | Hexahedron | 4|2 3 | Oh | U05 | K10 | 6 | 12 | 8 | 8 | |||||
3 | Hexahedron (Cube) | 3|2 4 | Oh | U06 | K11 | 8 | 12 | 6 | 6 | |||||
4 | Dodecahedron | 5|2 3 | Ih | U22 | K27 | 12 | 30 | 20 | 20 | |||||
5 | Dodecahedron | 3|2 5 | Ih | U23 | K28 | 20 | 30 | 12 | 12 |
Index | Name | Picture | Dual name | Dual picture | Wythoff symbol | Vertex figure | Symmetry group | U# | K# | V | E | F | Faces by type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | Truncated tetrahedron | 2 3|3 | 3.6.6 | Td | U02 | K07 | 12 | 18 | 8 | 4 + 4 | ||||
7 | Truncated octahedron | tetrakis hexahedron | 2 4|3 | 4.6.6 | Oh | U08 | K13 | 14 | 36 | 24 | 6 + 8 | |||
8 | Truncated hexahedron | 2 3|4 | 3.8.8 | Oh | U09 | K14 | 24 | 36 | 14 | 8 + 6 | ||||
9 | Truncated icosahedron | 2 5|3 | 5.6.6 | Ih | U25 | K30 | 60 | 90 | 32 | 12 + 20 | ||||
10 | Truncated dodecahedron | 2 3|5 | 3.10.10 | Ih | U26 | K31 | 60 | 90 | 32 | 20 + 12 | ||||
11 | Cuboctahedron | 2|3 4 | 3.4.3.4 | Oh | U07 | K12 | 12 | 24 | 14 | 8 + 6 | ||||
12 | Icosidodecahedron | 2|3 5 | 3.5.3.5 | Ih | U24 | K29 | 30 | 60 | 32 | 20 + 12 | ||||
13 | Small rhombicuboctahedron | deltoidal icositetrahedron | 3 4|2 | 3.4.4.4 | Oh | U10 | K15 | 24 | 48 | 26 | 8+(6+12) | |||
14 | Small rhombicosidodecahedron | 3 5|2 | 3.4.5.4 | Ih | U27 | K32 | 60 | 120 | 62 | 20 + 30 + 12 | ||||
15 | Truncated cuboctahedron (Great rhombicuboctahedron) | disdyakis dodecahedron | 2 3 4| | 4.6.8 | Oh | U11 | K16 | 48 | 72 | 26 | 12 + 8 + 6 | |||
16 | Truncated icosidodecahedron (Great rhombicosidodecahedron) | disdyakis triacontahedron | 2 3 5| | 4.6.10 | Ih | U28 | K33 | 120 | 180 | 62 | 30 + 20 + 12 | |||
17 | Snub cube | |2 3 4 | 3.3.3.3.4 | O | U12 | K17 | 24 | 60 | 38 | (8 + 24) + 6 | ||||
18 | Snub dodecahedron | |2 3 5 | 3.3.3.3.5 | I | U29 | K34 | 60 | 150 | 92 | (20 + 60) + 12 |
Index | Name | Picture | Dual name | Dual picture | Wythoff symbol | Vertex figure and Schläfli symbol | Symmetry group | U# | K# | V | E | F | Faces by type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | Small stellated dodecahedron | Great dodecahedron | 5|25/2 | Ih | U34 | K39 | 12 | 30 | 12 | 12 | ||||
21 | Great dodecahedron | Small stellated dodecahedron | 5/2|2 5 | Ih | U35 | K40 | 12 | 30 | 12 | 12 | ||||
22 | Great stellated dodecahedron | Great icosahedron | 3|25/2 | Ih | U52 | K57 | 20 | 30 | 12 | 12 | ||||
41 | Great icosahedron (16th stellation of icosahedron) | Great stellated dodecahedron | 5/2|2 3 | Ih | U53 | K58 | 12 | 30 | 20 | 20 |
Index | Name | Symmetry group | Picture | Facets | |
---|---|---|---|---|---|
2 | Octahedron (regular) | Oh | |||
19 | Stellated octahedron (Compound of two tetrahedra) | Oh |
Index | Name | Symmetry group | Picture | Facets | |
---|---|---|---|---|---|
5 | Dodecahedron (regular) | Ih | |||
20 | Small stellated dodecahedron (regular) (First stellation of dodecahedron) | Ih | |||
21 | Great dodecahedron (regular) (Second stellation of dodecahedron) | Ih | |||
22 | Great stellated dodecahedron (regular) (Third stellation of dodecahedron) | Ih |
Index | Name | Picture | Dual name | Dual picture | Wythoff symbol | Vertex figure | Symmetry group | U# | K# | V | E | F | Faces by type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67 | Tetrahemihexahedron | Tetrahemihexacron | 3/23|2 | 4.3/2.4.3 | Td | U04 | K09 | 6 | 12 | 7 | 4+3 | |||
68 | Octahemioctahedron | Octahemioctacron | 3/23|3 | 6.3/2.6.3 | Oh | U03 | K08 | 12 | 24 | 12 | 8+4 | |||
69 | Small cubicuboctahedron | Small hexacronic icositetrahedron | 3/24|4 | 8.3/2.8.4 | Oh | U13 | K18 | 24 | 48 | 20 | 8+6+6 | |||
70 | Small ditrigonal icosidodecahedron | Small triambic icosahedron | 3|5/23 | (5/2.3)3 | Ih | U30 | K35 | 20 | 60 | 32 | 20+12 | |||
71 | Small icosicosidodecahedron | Small icosacronic hexecontahedron | 5/23|3 | 6.5/2.6.3 | Ih | U31 | K36 | 60 | 120 | 52 | 20+12+20 | |||
72 | Small dodecicosidodecahedron | Small dodecacronic hexecontahedron | 3/25|5 | 10.3/2.10.5 | Ih | U33 | K38 | 60 | 120 | 44 | 20+12+12 | |||
73 | Dodecadodecahedron | Medial rhombic triacontahedron | 2|5/25 | (5/2.5)2 | Ih | U36 | K41 | 30 | 60 | 24 | 12+12 | |||
74 | Small rhombidodecahedron | Small rhombidodecacron | 25/25| | 10.4.10/9.4/3 | Ih | U39 | K44 | 60 | 120 | 42 | 30+12 | |||
75 | Truncated great dodecahedron | Small stellapentakis dodecahedron | 25/2|5 | 10.10.5/2 | Ih | U37 | K42 | 60 | 90 | 24 | 12+12 | |||
76 | Rhombidodecadodecahedron | Medial deltoidal hexecontahedron | 5/25|2 | 4.5/2.4.5 | Ih | U38 | K43 | 60 | 120 | 54 | 30+12+12 | |||
77 | Great cubicuboctahedron | Great hexacronic icositetrahedron | 3 4|4/3 | 8/3.3.8/3.4 | Oh | U14 | K19 | 24 | 48 | 20 | 8+6+6 | |||
78 | Cubohemioctahedron | Hexahemioctacron | 4/34|3 | 6.4/3.6.4 | Oh | U15 | K20 | 12 | 24 | 10 | 6+4 | |||
79 | Cubitruncated cuboctahedron (Cuboctatruncated cuboctahedron) | Tetradyakis hexahedron | 4/33 4| | 8/3.6.8 | Oh | U16 | K21 | 48 | 72 | 20 | 8+6+6 | |||
80 | Ditrigonal dodecadodecahedron | Medial triambic icosahedron | 3|5/35 | (5/3.5)3 | Ih | U41 | K46 | 20 | 60 | 24 | 12+12 | |||
81 | Great ditrigonal dodecicosidodecahedron | Great ditrigonal dodecacronic hexecontahedron | 3 5|5/3 | 10/3.3.10/3.5 | Ih | U42 | K47 | 60 | 120 | 44 | 20+12+12 | |||
82 | Small ditrigonal dodecicosidodecahedron | Small ditrigonal dodecacronic hexecontahedron | 5/33|5 | 10.5/3.10.3 | Ih | U43 | K48 | 60 | 120 | 44 | 20+12+12 | |||
83 | Icosidodecadodecahedron | Medial icosacronic hexecontahedron | 5/35|3 | 6.5/3.6.5 | Ih | U44 | K49 | 60 | 120 | 44 | 12+12+20 | |||
84 | Icositruncated dodecadodecahedron (Icosidodecatruncated icosidodecahedron) | Tridyakis icosahedron | 5/33 5| | 10/3.6.10 | Ih | U45 | K50 | 120 | 180 | 44 | 20+12+12 | |||
85 | Nonconvex great rhombicuboctahedron (Quasirhombicuboctahedron) | Great deltoidal icositetrahedron | 3/24|2 | 4.3/2.4.4 | Oh | U17 | K22 | 24 | 48 | 26 | 8+(6+12) | |||
86 | Small rhombihexahedron | Small rhombihexacron | 3/22 4| | 4.8.4/3.8 | Oh | U18 | K23 | 24 | 48 | 18 | 12+6 | |||
87 | Great ditrigonal icosidodecahedron | Great triambic icosahedron | 3/2|3 5 | (5.3.5.3.5.3)/2 | Ih | U47 | K52 | 20 | 60 | 32 | 20+12 | |||
88 | Great icosicosidodecahedron | Great icosacronic hexecontahedron | 3/25|3 | 6.3/2.6.5 | Ih | U48 | K53 | 60 | 120 | 52 | 20+12+20 | |||
89 | Small icosihemidodecahedron | Small icosihemidodecacron | 3/23|5 | 10.3/2.10.3 | Ih | U49 | K54 | 30 | 60 | 26 | 20+6 | |||
90 | Small dodecicosahedron | Small dodecicosacron | 3/23 5| | 10.6.10/9.6/5 | Ih | U50 | K55 | 60 | 120 | 32 | 20+12 | |||
91 | Small dodecahemidodecahedron | Small dodecahemidodecacron | 5/45|5 | 10.5/4.10.5 | Ih | U51 | K56 | 30 | 60 | 18 | 12+6 | |||
92 | Stellated truncated hexahedron (Quasitruncated hexahedron) | Great triakis octahedron | 2 3|4/3 | 8/3.8/3.3 | Oh | U19 | K24 | 24 | 36 | 14 | 8+6 | |||
93 | Great truncated cuboctahedron (Quasitruncated cuboctahedron) | Great disdyakis dodecahedron | 4/32 3| | 8/3.4.6 | Oh | U20 | K25 | 48 | 72 | 26 | 12+8+6 | |||
94 | Great icosidodecahedron | Great rhombic triacontahedron | 2|5/23 | (5/2.3)2 | Ih | U54 | K59 | 30 | 60 | 32 | 20+12 | |||
95 | Truncated great icosahedron | Great stellapentakis dodecahedron | 25/2|3 | 6.6.5/2 | Ih | U55 | K60 | 60 | 90 | 32 | 12+20 | |||
96 | Rhombicosahedron | Rhombicosacron | 25/23| | 6.4.6/5.4/3 | Ih | U56 | K61 | 60 | 120 | 50 | 30+20 | |||
97 | Small stellated truncated dodecahedron (Quasitruncated small stellated dodecahedron) | Great pentakis dodecahedron | 2 5|5/3 | 10/3.10/3.5 | Ih | U58 | K63 | 60 | 90 | 24 | 12+12 | |||
98 | Truncated dodecadodecahedron (Quasitruncated dodecahedron) | Medial disdyakis triacontahedron | 5/32 5| | 10/3.4.10 | Ih | U59 | K64 | 120 | 180 | 54 | 30+12+12 | |||
99 | Great dodecicosidodecahedron | Great dodecacronic hexecontahedron | 5/23|5/3 | 10/3.5/2.10/3.3 | Ih | U61 | K66 | 60 | 120 | 44 | 20+12+12 | |||
100 | Small dodecahemicosahedron | Small dodecahemicosacron | 5/35/2|3 | 6.5/3.6.5/2 | Ih | U62 | K67 | 30 | 60 | 22 | 12+10 | |||
101 | Great dodecicosahedron | Great dodecicosacron | 5/35/23| | 6.10/3.6/5.10/7 | Ih | U63 | K68 | 60 | 120 | 32 | 20+12 | |||
102 | Great dodecahemicosahedron | Great dodecahemicosacron | 5/45|3 | 6.5/4.6.5 | Ih | U65 | K70 | 30 | 60 | 22 | 12+10 | |||
103 | Great rhombihexahedron | Great rhombihexacron | 4/33/22| | 4.8/3.4/3.8/5 | Oh | U21 | K26 | 24 | 48 | 18 | 12+6 | |||
104 | Great stellated truncated dodecahedron (Quasitruncated great stellated dodecahedron) | Great triakis icosahedron | 2 3|5/3 | 10/3.10/3.3 | Ih | U66 | K71 | 60 | 90 | 32 | 20+12 | |||
105 | Nonconvex great rhombicosidodecahedron (Quasirhombicosidodecahedron) | Great deltoidal hexecontahedron | 5/33|2 | 4.5/3.4.3 | Ih | U67 | K72 | 60 | 120 | 62 | 20+30+12 | |||
106 | Great icosihemidodecahedron | Great icosihemidodecacron | 3 3|5/3 | 10/3.3/2.10/3.3 | Ih | U71 | K76 | 30 | 60 | 26 | 20+6 | |||
107 | Great dodecahemidodecahedron | Great dodecahemidodecacron | 5/35/2|5/3 | 10/3.5/3.10/3.5/2 | Ih | U70 | K75 | 30 | 60 | 18 | 12+6 | |||
108 | Great truncated icosidodecahedron (Great quasitruncated icosidodecahedron) | Great disdyakis triacontahedron | 5/32 3| | 10/3.4.6 | Ih | U68 | K73 | 120 | 180 | 62 | 30+20+12 | |||
109 | Great rhombidodecahedron | Great rhombidodecacron | 3/25/32| | 4.10/3.4/3.10/7 | Ih | U73 | K78 | 60 | 120 | 42 | 30+12 | |||
110 | Small snub icosicosidodecahedron | Small hexagonal hexecontahedron | |5/23 3 | 3.3.3.3.3.5/2 | Ih | U32 | K37 | 60 | 180 | 112 | (40+60)+12 | |||
111 | Snub dodecadodecahedron | Medial pentagonal hexecontahedron | |25/25 | 3.3.5/2.3.5 | I | U40 | K45 | 60 | 150 | 84 | 60+12+12 | |||
112 | Snub icosidodecadodecahedron | Medial hexagonal hexecontahedron | |5/33 5 | 3.3.3.3.5.5/3 | I | U46 | K51 | 60 | 180 | 104 | (20+6)+12+12 | |||
113 | Great inverted snub icosidodecahedron | Great inverted pentagonal hexecontahedron | |5/32 3 | 3.3.3.3.5/3 | I | U69 | K74 | 60 | 150 | 92 | (20+60)+12 | |||
114 | Inverted snub dodecadodecahedron | Medial inverted pentagonal hexecontahedron | |5/32 5 | 3.5/3.3.3.5 | I | U60 | K65 | 60 | 150 | 84 | 60+12+12 | |||
115 | Great snub dodecicosidodecahedron | Great hexagonal hexecontahedron | |5/35/23 | 3.5/3.3.5/2.3.3 | I | U64 | K69 | 60 | 180 | 104 | (20+60)+(12+12) | |||
116 | Great snub icosidodecahedron | Great pentagonal hexecontahedron | |25/25/2 | 3.3.3.3.5/2 | I | U57 | K62 | 60 | 150 | 92 | (20+60)+12 | |||
117 | Great retrosnub icosidodecahedron | Great pentagrammic hexecontahedron | |3/25/32 | (3.3.3.3.5/2)/2 | I | U74 | K79 | 60 | 150 | 92 | (20+60)+12 | |||
118 | Small retrosnub icosicosidodecahedron | Small hexagrammic hexecontahedron | |3/23/25/2 | (3.3.3.3.3.5/2)/2 | Ih | U72 | K77 | 180 | 60 | 112 | (40+60)+12 | |||
119 | Great dirhombicosidodecahedron | Great dirhombicosidodecacron | |3/25/335/2 | (4.5/3.4.3.4.5/2.4.3/2)/2 | Ih | U75 | K80 | 60 | 240 | 124 | 40+60+24 |
. Magnus Wenninger . Polyhedron Models . Cambridge University Press . 1974 . 0-521-09859-9 .
. Magnus Wenninger . Spherical Models . registration . Cambridge University Press . 1979 . 0-521-29432-0 .