This is a list of notable integer sequences with links to their entries in the On-Line Encyclopedia of Integer Sequences.
Name | First elements | Short description | OEIS | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... | The th term describes the length of the th run | |||||||||||||||||
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... | is the number of positive integers not greater than that are coprime with . | |||||||||||||||||
Lucas numbers | 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... | for, with and . | ||||||||||||||||
Prime numbers | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... | The prime numbers, with . A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. | ||||||||||||||||
Partition numbers | 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ... | The partition numbers, number of additive breakdowns of n. | ||||||||||||||||
Fibonacci numbers | 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... | for, with and . | ||||||||||||||||
2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, ... | for, with . | |||||||||||||||||
Tribonacci numbers | 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, ... | for, with . | ||||||||||||||||
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... | Powers of 2: 2n for n ≥ 0 | |||||||||||||||||
Polyominoes | 1, 1, 1, 2, 5, 12, 35, 108, 369, ... | The number of free polyominoes with cells. | ||||||||||||||||
Catalan numbers | 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ... | Cn=
{2n\choosen}=
=
, n\ge0. | ||||||||||||||||
Bell numbers | 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... | is the number of partitions of a set with elements. | ||||||||||||||||
Euler zigzag numbers | 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, ... | is the number of linear extensions of the "zig-zag" poset. | ||||||||||||||||
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, ... | The maximal number of pieces formed when slicing a pancake with cuts. | |||||||||||||||||
Pell numbers | 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ... | for, with . | ||||||||||||||||
Factorials | 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, ... | for, with (empty product). | ||||||||||||||||
Derangements | 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, ... | Number of permutations of n elements with no fixed points. | ||||||||||||||||
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, ... | is the sum of divisors of a positive integer . | |||||||||||||||||
Fermat numbers | 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, ... | for . | ||||||||||||||||
Polytrees | 1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, ... | Number of oriented trees with n nodes. | ||||||||||||||||
Perfect numbers | 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, ... | is equal to the sum of the proper divisors of . | ||||||||||||||||
1, −24, 252, −1472, 4830, −6048, −16744, 84480, −113643, ... | Values of the Ramanujan tau function, at n = 1, 2, 3, ... | |||||||||||||||||
1, 1, 2, 3, 4, 6, 6, 12, 15, 20, ... | The largest order of permutation of elements. | |||||||||||||||||
1, 1, 1, 2, 3, 4, 6, 9, 13, 19, ... | The number of cows each year if each cow has one cow a year beginning its fourth year. | |||||||||||||||||
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, ... | for, with . | |||||||||||||||||
2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, ... | is smallest prime factor of . | |||||||||||||||||
Lucky numbers | 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, ... | A natural number in a set that is filtered by a sieve. | ||||||||||||||||
Prime powers | 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, ... | Positive integer powers of prime numbers | ||||||||||||||||
Central binomial coefficients | 1, 2, 6, 20, 70, 252, 924, ... | {2n\choosen}=
foralln\geq0 | ||||||||||||||||
Motzkin numbers | 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, ... | The number of ways of drawing any number of nonintersecting chords joining (labeled) points on a circle. | ||||||||||||||||
Jordan–Pólya numbers | 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, ... | Numbers that are the product of factorials. | ||||||||||||||||
Jacobsthal numbers | 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ... | for, with . | ||||||||||||||||
0, 1, 1, 3, 1, 6, 1, 7, 4, 8, ... | is the sum of the proper divisors of the positive integer . | |||||||||||||||||
Wedderburn–Etherington numbers | 0, 1, 1, 1, 2, 3, 6, 11, 23, 46, ... | The number of binary rooted trees (every node has out-degree 0 or 2) with endpoints (and nodes in all). | ||||||||||||||||
1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, ... | Number of odd entries in row n of Pascal's triangle. | |||||||||||||||||
Semiprimes | 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, ... | Products of two primes, not necessarily distinct. | ||||||||||||||||
1, 2, 2, 3, 3, 4, 4, 4, 5, 5, ... | is the number of times occurs, starting with . | |||||||||||||||||
Perrin numbers | 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, ... | for, with . | ||||||||||||||||
0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 49, ... | Used in the analysis of comparison sorts. | |||||||||||||||||
Cullen numbers | 1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, ... | , with . | ||||||||||||||||
Primorials | 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, ... | , the product of the first primes. | ||||||||||||||||
Highly composite numbers | 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... | A positive integer with more divisors than any smaller positive integer. | ||||||||||||||||
Superior highly composite numbers | 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... | A positive integer for which there is an such that for all . | ||||||||||||||||
Pronic numbers | 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, ... | , with where are the triangular numbers. | ||||||||||||||||
Markov numbers | 1, 2, 5, 13, 29, 34, 89, 169, 194, ... | Positive integer solutions of . | ||||||||||||||||
Composite numbers | 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... | The numbers of the form for and . | ||||||||||||||||
1, 2, 3, 4, 6, 8, 11, 13, 16, 18, ... | for is least number which is a unique sum of two distinct earlier terms; semiperfect. | |||||||||||||||||
Prime knots | 0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, ... | The number of prime knots with n crossings. | ||||||||||||||||
Carmichael numbers | 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, ... | Composite numbers such that if is coprime with . | ||||||||||||||||
Woodall numbers | 1, 7, 23, 63, 159, 383, 895, 2047, 4607, ... | , with . | ||||||||||||||||
Arithmetic numbers | 1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, ... | An integer for which the average of its positive divisors is also an integer. | ||||||||||||||||
Colossally abundant numbers | 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... | A number n is colossally abundant if there is an such that for all,
, | ||||||||||||||||
0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, ... | Number of triangles with integer sides and perimeter . | |||||||||||||||||
Deficient numbers | 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, ... | Positive integers such that . | ||||||||||||||||
Abundant numbers | 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, ... | Positive integers such that . | ||||||||||||||||
Untouchable numbers | 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, ... | Cannot be expressed as the sum of all the proper divisors of any positive integer. | ||||||||||||||||
Recamán's sequence | 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... | "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. | ||||||||||||||||
Look-and-say sequence | 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211, ... | A = 'frequency' followed by 'digit'-indication. | ||||||||||||||||
Practical numbers | 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ... | All smaller positive integers can be represented as sums of distinct factors of the number. | ||||||||||||||||
Alternating factorial | 1, 1, 5, 19, 101, 619, 4421, 35899, 326981, 3301819, 36614981, 442386619, 5784634181, 81393657019, ... | n! − (n−1) | + (n−2)! − ... ± 1 | . | ||||||||||||||
Fortunate numbers | 3, 5, 7, 13, 23, 17, 19, 23, 37, 61, ... | The smallest integer such that is a prime number, where the primorial is the product of the first prime numbers. | ||||||||||||||||
Semiperfect numbers | 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, ... | A natural number that is equal to the sum of all or some of its proper divisors. | ||||||||||||||||
Magic constants | 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, ... | Sum of numbers in any row, column, or diagonal of a magic square of order . | ||||||||||||||||
Weird numbers | 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, ... | A natural number that is abundant but not semiperfect. | ||||||||||||||||
Farey sequence numerators | 0, 1, 0, 1, 1, 0, 1, 1, 2, 1, ... | |||||||||||||||||
Farey sequence denominators | 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, ... | |||||||||||||||||
Euclid numbers | 2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, ... | , i.e. product of first consecutive primes. | ||||||||||||||||
Kaprekar numbers | 1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, ... | , where and . | ||||||||||||||||
Sphenic numbers | 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, ... | Products of 3 distinct primes. | ||||||||||||||||
Giuga numbers | 30, 858, 1722, 66198, 2214408306, ... | Composite numbers so that for each of its distinct prime factors pi we have
| \, (n - p_i). | |||||||||||||||
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, ... | The radical of a positive integer is the product of the distinct prime numbers dividing . | |||||||||||||||||
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, ... | ||||||||||||||||||
1, 1, 0, 1, 1, 0, 0, 1, 1, 1, ... | At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence. | |||||||||||||||||
Blum integers | 21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, ... | Numbers of the form where and are distinct primes congruent to . | ||||||||||||||||
2, 8, 20, 28, 50, 82, 126, ... | A number of nucleons (either protons or neutrons) such that they are arranged into complete shells within the atomic nucleus. | |||||||||||||||||
Superperfect numbers | 2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, ... | Positive integers for which | ||||||||||||||||
Bernoulli numbers | 1, −1, 1, 0, −1, 0, 1, 0, −1, 0, 5, 0, −691, 0, 7, 0, −3617, 0, 43867, 0, ... | |||||||||||||||||
Hyperperfect numbers | 6, 21, 28, 301, 325, 496, 697, ... | -hyperperfect numbers, i.e. for which the equality holds. | ||||||||||||||||
Achilles numbers | 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, ... | Positive integers which are powerful but imperfect. | ||||||||||||||||
Primary pseudoperfect numbers | 2, 6, 42, 1806, 47058, 2214502422, 52495396602, ... | Satisfies a certain Egyptian fraction. | ||||||||||||||||
Erdős–Woods numbers | 16, 22, 34, 36, 46, 56, 64, 66, 70, 76, 78, 86, 88, ... | The length of an interval of consecutive integers with property that every element has a factor in common with one of the endpoints. | ||||||||||||||||
Sierpinski numbers | 78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, ... | Odd for which consists only of composite numbers. | ||||||||||||||||
Riesel numbers | 509203, 762701, 777149, 790841, 992077, ... | Odd for which consists only of composite numbers. | ||||||||||||||||
1, 1, 0, 1, 1, 0, 0, 1, 0, 1, ... | if the binary representation of contains no block of consecutive zeros of odd length; otherwise . | |||||||||||||||||
1, 1, 2, 1, 1, 2, 2, 2, 3, 1, ... | The th term counts the maximal number of repeated blocks at the end of the subsequence from to | |||||||||||||||||
Carol numbers | −1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, ... | a(n)=(2n-1)2-2. | ||||||||||||||||
0, 1, 1, 5, 2, 11, 2, 18, 2, 27, ... | If then else . | |||||||||||||||||
Highly totient numbers | 1, 2, 4, 8, 12, 24, 48, 72, 144, 240, ... | Each number on this list has more solutions to the equation than any preceding . | ||||||||||||||||
Euler numbers | 1, 0, −1, 0, 5, 0, −61, 0, 1385, 0, ... |
=
=
⋅ tn. | ||||||||||||||||
Polite numbers | 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ... | A positive integer that can be written as the sum of two or more consecutive positive integers. | ||||||||||||||||
Erdős–Nicolas numbers | 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... | A number such that there exists another number and \sumdd=n. | ||||||||||||||||
Solution to Stepping Stone Puzzle | 1, 16, 28, 38, 49, 60, ... | The maximal value of the stepping stone puzzle | ||||||||||||||||
See main article: Figurate number.
Name | First elements | Short description | OEIS | |
---|---|---|---|---|
Natural numbers | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... | The natural numbers (positive integers) . | ||
Triangular numbers | 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ... | for, with (empty sum). | ||
Square numbers | 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... | |||
Tetrahedral numbers | 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, ... | is the sum of the first triangular numbers, with (empty sum). | ||
Square pyramidal numbers | 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, ... | The number of stacked spheres in a pyramid with a square base. | ||
Cube numbers | 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, ... | |||
Fifth powers | 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, ... | |||
Star numbers | 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, ... | Sn = 6n(n − 1) + 1. | ||
Stella octangula numbers | 0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, ... | Stella octangula numbers:, with . |
See main article: List of prime numbers.
Name | First elements | Short description | OEIS | |
---|---|---|---|---|
Mersenne prime exponents | 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... | Primes such that is prime. | ||
Mersenne primes | 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, ... | is prime, where is a prime. | ||
Wagstaff primes | 3, 11, 43, 683, 2731, 43691, ... | A prime number p of the form p={{2q+1}\over3} | ||
Wieferich primes | 1093, 3511 | Primes p | ||
Sophie Germain primes | 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, ... | A prime number such that is also prime. | ||
Wilson primes | 5, 13, 563 | Primes p | ||
Happy numbers | 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, ... | The numbers whose trajectory under iteration of sum of squares of digits map includes . | ||
Factorial primes | 2, 3, 5, 7, 23, 719, 5039, 39916801, ... | A prime number that is one less or one more than a factorial (all factorials > 1 are even). | ||
Wolstenholme primes | 16843, 2124679 | Primes p {2p-1\choosep-1}\equiv1\pmod{p4} | ||
Ramanujan primes | 2, 11, 17, 29, 41, 47, 59, 67, ... | The th Ramanujan prime is the least integer for which, for all . |
See main article: category.
Name | First elements | Short description | OEIS | |
---|---|---|---|---|
1, 4, 11, 16, 24, 29, 33, 35, 39, 45, ... | "t" is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas. | |||
Palindromic numbers | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, ... | A number that remains the same when its digits are reversed. | ||
Permutable primes | 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, ... | The numbers for which every permutation of digits is a prime. | ||
Harshad numbers in base 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, ... | A Harshad number in base 10 is an integer that is divisible by the sum of its digits (when written in base 10). | ||
Factorions | 1, 2, 145, 40585, ... | A natural number that equals the sum of the factorials of its decimal digits. | ||
Circular primes | 2, 3, 5, 7, 11, 13, 17, 37, 79, 113, ... | The numbers which remain prime under cyclic shifts of digits. | ||
1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, ... | For is the prime that is finally reached when you start with, concatenate its prime factors (A037276) and repeat until a prime is reached; if no prime is ever reached. | |||
Undulating numbers | 101, 121, 131, 141, 151, 161, 171, 181, 191, 202, ... | A number that has the digit form . | ||
Equidigital numbers | 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, ... | A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. | ||
Extravagant numbers | 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... | A number that has fewer digits than the number of digits in its prime factorization (including exponents). | ||
Pandigital numbers | 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896, ... | Numbers containing the digits such that each digit appears exactly once. |