x
n
(p,q)
q>1
0<\left|x- | p | \right|< |
q |
1 | |
qn |
.
L=0.110001000000000000000001\ldots,
n
Liouville numbers can be shown to exist by an explicit construction.
For any integer
b\ge2
(a1,a2,\ldots)
ak\in\{0,1,2,\ldots,b-1\}
k
ak\ne0
k
| ||||
x=\sum | ||||
k=1 |
b=10
ak=1
k
x
L=0.{\color{red}11}000{\color{red}1}00000000000000000{\color{red}1}\ldots
x
b
x=(0.a1a2000a300000000000000000a4\ldots)b
n
n!
Since this base-
b
x
p/q
|x-p/q|>0
Now, for any integer
n\ge1
pn
qn
n! | |
q | |
n=b |
; pn=qn\sum
| ||||
k=1 |
n!-k! | |
=\sum | |
kb |
Therefore, any such
x
infty | |
\sum | |
k=n+1 |
ak | |
bk! |
\le
infty | |
\sum | |
k=n+1 |
b-1 | |
bk! |
infty | |
\sum | |
k=n+1 |
ak | |
bk! |
infty | |
\begin{align} \sum | |
k=n+1 |
b-1 | |
bk! |
<
infty | |
\sum | |
k=(n+1)! |
b-1 | |
bk |
\end{align}
infty | |
\sum | |
k=0 |
1 | |
bk |
=
b | |
b-1 |
infty | |
\sum | |
k=n+1 |
ak | |
bk! |
bk!
bk
infty
1 | |
bexponent x |
infty | |
\sum | |
k=n+1 |
b-1 | |
bk! |
infty | |
\sum | |
k=n+1 |
b-1 | |
bk! |
b-1 | |
bk! |
<
b-1 | |
bk |
infty | |
\begin{align} \sum | |
k=n+1 |
b-1 | |
bk! |
<
infty | |
\sum | |
k=n+1 |
b-1 | |
bk |
\end{align}
infty | |
\sum | |
k=n+1 |
b-1 | |
bk |
b(n+1)!=b(n+1)!b0
b | |
b(n+1)! |
\le
bn! | |
b(n+1)! |
b | |
b(n+1)! |
1 | |
bexponent x |
qn=bn!
Here the proof will show that the number
~x=c/d~,
~d>0~,
~c/d~,
More specifically, this proof shows that for any positive integer large enough that
~2n>d>0~
~(p,q)~
0<\left|x-
p | |
q |
\right|<
1 | |
qn |
~.
If the claim is true, then the desired conclusion follows.
Let and be any integers with
~q>1~.
\left|x-
p | |
q |
\right|=\left|
c | |
d |
-
p | |
q |
\right|=
|cq-dp| | |
dq |
If
\left|cq-dp\right|=0~,
\left|x-
p | |
q |
\right|=
|cq-dp| | |
dq |
=0~,
meaning that such pair of integers
~(p,q)~
If, on the other hand, since
~\left|cq-dp\right|>0~,
cq-dp
\left|cq-dp\right|\ge1~.
\left|x-
p | |
q |
\right|=
|cq-dp| | |
dq |
\ge
1 | |
dq |
Now for any integer
~n>1+log2(d)~,
\left|x-
p | |
q |
\right|\ge
1 | |
dq |
>
1 | |
2n-1q |
\ge
1 | |
qn |
~.
Therefore, in the case
~\left|cq-dp\right|>0~
~(p,q)~
Therefore, to conclude, there is no pair of integers
~(p,q)~,
~q>1~,
~x=c/d~,
Hence a Liouville number cannot be rational.
No Liouville number is algebraic. The proof of this assertion proceeds by first establishing a property of irrational algebraic numbers. This property essentially says that irrational algebraic numbers cannot be well approximated by rational numbers, where the condition for "well approximated" becomes more stringent for larger denominators. A Liouville number is irrational but does not have this property, so it can't be algebraic and must be transcendental. The following lemma is usually known as Liouville's theorem (on diophantine approximation), there being several results known as Liouville's theorem.
Lemma: If
\alpha
n>1
A>0
p,q
q>0
\left|\alpha- | p | \right|> |
q |
A | |
qn |
Proof of Lemma: Let
k | |
f(x)=\sum | |
kx |
f(\alpha)=0
By the fundamental theorem of algebra,
f
n
\delta1>0
0<|x-\alpha|<\delta1
f(x)\ne0
Since
f
\alpha
f'(\alpha)\ne0
f'
\delta2>0
M>0
|x-\alpha|<\delta2
0<|f'(x)|\leM
Both conditions are satisfied for
\delta=min\{\delta1,\delta2\}
Now let
\tfrac{p}{q}\in(\alpha-\delta,\alpha+\delta)
\tfrac{p}{q}<\alpha
x0\in\left(\tfrac{p}{q},\alpha\right)
f'(x | |||||||||||
|
f(\alpha)=0
fl(\tfrac{p}{q}r)\ne0
|f'(x0)|>0
\begin{align}\left|\alpha- | p | \right|&= |
q |
| = | |||||
|f'(x0)| |
| \\[5pt]&= | |||||
|f'(x0)| |
1 | |
|f'(x0)| |
kq | |
\left|\sum | |
kp |
-k\right|\\[5pt]&=
1 | ||||||
|
kq | |
\underbrace{\left|\sum | |
kp |
n-k\right|}\ge1\\&\ge
1 | > | |
Mqn |
A | :0<A<min\left\{\delta, | |
qn |
1 | |
M |
\right\}\end{align}
Proof of assertion: As a consequence of this lemma, let x be a Liouville number; as noted in the article text, x is then irrational. If x is algebraic, then by the lemma, there exists some integer n and some positive real A such that for all p, q
\left|x-
p | |
q |
\right|>
A | |
qn |
Let r be a positive integer such that 1/(2r) ≤ A and define m = r + n. Since x is a Liouville number, there exist integers a, b with b > 1 such that
\left|x- |
| ||||||||||
which contradicts the lemma. Hence a Liouville number cannot be algebraic, and therefore must be transcendental.
Establishing that a given number is a Liouville number proves that it is transcendental. However, not every transcendental number is a Liouville number. The terms in the continued fraction expansion of every Liouville number are unbounded; using a counting argument, one can then show that there must be uncountably many transcendental numbers which are not Liouville. Using the explicit continued fraction expansion of e, one can show that e is an example of a transcendental number that is not Liouville. Mahler proved in 1953 that is another such example.[2]
Consider the number
3.1400010000000000000000050000....3.14(3 zeros)1(17 zeros)5(95 zeros)9(599 zeros)2(4319 zeros)6...
where the digits are zero except in positions n! where the digit equals the nth digit following the decimal point in the decimal expansion of .
As shown in the section on the existence of Liouville numbers, this number, as well as any other non-terminating decimal with its non-zero digits similarly situated, satisfies the definition of a Liouville number. Since the set of all sequences of non-null digits has the cardinality of the continuum, the same is true of the set of all Liouville numbers.
Moreover, the Liouville numbers form a dense subset of the set of real numbers.
From the point of view of measure theory, the set of all Liouville numbers
L
λ(L)
For positive integers
n>2
q\geq2
Vn,q
infty | ||
=cup\limits | \left( | |
p=-infty |
p | - | |
q |
1 | , | |
qn |
p | + | |
q |
1 | |
qn |
\right)
then
L\subseteq
infty | |
cup | |
q=2 |
Vn,q.
Observe that for each positive integer
n\geq2
m\geq1
L\cap(-m,m)\subseteq
infty | |
cup\limits | |
q=2 |
Vn,q\cap(-m,m)\subseteq
mq | |
cup\limits | |
p=-mq |
\left(
p | - | |
q |
1 | , | |
qn |
p | + | |
q |
1 | |
qn |
\right).
Since
\left|\left( | p | + |
q |
1 | \right)-\left( | |
qn |
p | - | |
q |
1 | \right)\right|= | |
qn |
2 | |
qn |
and
n>2
\begin{align} \mu(L\cap(-m,m))&
mq | |
\leq\sum | |
p=-mq |
2 | |
qn |
=
infty | |
\sum | |
q=2 |
2(2mq+1) | |
qn |
\\[6pt] &\leq
| ||||
(4m+1)\sum | ||||
q=2 |
\leq(4m+1)
infty | |
\int | |
1 |
dq | \leq | |
qn-1 |
4m+1 | |
n-2 |
. \end{align}
Now
\limn\toinfty
4m+1 | |
n-2 |
=0
and it follows that for each positive integer
m
L\cap(-m,m)
L
In contrast, the Lebesgue measure of the set of all real transcendental numbers is infinite (since the set of algebraic numbers is a null set).
One could show even more - the set of Liouville numbers has Hausdorff dimension 0 (a property strictly stronger than having Lebesgue measure 0).
For each positive integer, set
~Un=
infty | |
cup\limits | |
q=2 |
~
infty | |
cup\limits | |
p=-infty |
~\left\{x\inR:0<\left|x-
p | |
q |
\right|<
1 | |
qn |
\right\}=
infty | |
cup\limits | |
q=2 |
~
infty | |
cup\limits | |
p=-infty |
~\left(
p | - | |
q |
1 | ~,~ | |
qn |
p | |
q |
+
1 | |
qn |
\right)\setminus\left\{
p | |
q |
\right\}~
~L~=~
infty | |
cap\limits | |
n=1 |
Un~=~
cap\limits | |
n\inN1 |
~cup\limits~cup\limits\left(\left(
p | |
q |
-
1 | |
qn |
~,~
p | |
q |
+
1 | |
qn |
\right)\setminus\left\{
p | |
q |
\right\}\right)~.
Each
~Un~
~p/q~
The Liouville–Roth irrationality measure (irrationality exponent, approximation exponent, or Liouville–Roth constant) of a real number
x
(p,q)
n
\mu(x)
n
n
0<\left|x-
p | |
q |
\right|<
1 | |
qn |
(p,q)
q>0
n\le\mu(x)
p/q
x
n>\mu(x)
(p,q)
q>0
x ≈ p/q
p,q\in\N
n+1
1 | |
10n |
\ge\left|x-
p | |
q |
\right|\ge
1 | |
q\mu(x)+\varepsilon |
for any
\varepsilon>0
(p,q)
x
\mu(x)=infty
As a consequence of Dirichlet's approximation theorem every irrational number has irrationality measure at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers have an irrationality measure equal to 2.
Below is a table of known upper and lower bounds for the irrationality measures of certain numbers.
Irrationality measure \mu(x) | Simple continued fraction [a0;a1,a2,...] | Notes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower bound | Upper bound | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rational number
p,q\inZ q ≠ 0 | 1 | Finite continued fraction. | Every rational number
Examples include 1, 2 and 0.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Irrational algebraic number a | 2 | Infinite continued fraction. Periodic if quadratic irrational. | By the Thue–Siegel–Roth theorem the irrationality measure of any irrational algebraic number is exactly 2. Examples include square roots like \sqrt{2},\sqrt{3} \sqrt{5} \varphi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
e2/k,k\inZ+ | 2 | Infinite continued fraction. | If the elements an x an<cn+d c d \mu(x)=2 Examples include e I0(1)/I1(1) e=[2;1,2,1,1,4,1,1,6,1,1,...] I0(1)/I1(1)=[2;4,6,8,10,12,14,16,18,20,22...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\right),k\inZ+ | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\right),k\inZ+ | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
hq(1) | 2 | 2.49846... | Infinite continued fraction. | q\in\{\pm2,\pm3,\pm4,...\} hq(1) q | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
lnq(2) | 2 | 2.93832... |
,...\right\} lnq(x) q | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
lnq(1-z) | 2 | 3.76338... |
,...\right\} 0< | z | \leq1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ln(2) | 2 | 3.57455... | [0;1,2,3,1,6,3,1,1,2,1,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ln(3) | 2 | 5.11620... | [1;10,7,9,2,2,1,3,1,1,32,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\zeta(3) | 2 | 5.51389... | [1;4,1,18,1,1,1,4,1,9,9,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\pi2 \zeta(2) | 2 | 5.09541... | [9;1,6,1,2,47,1,8,1,1,2,...] [1;1,1,1,4,2,4,7,1,4,2,...] | \pi2 \zeta(2)=\pi2/6 Q | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\pi | 2 | 7.10320... | [3;7,15,1,292,1,1,1,2,1,3,...] | It has been proven that if the Flint Hills series
\pi | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/3) | 2 | 6.09675... | [0;3,9,3,1,5,1,6,3,1,2,...] | Of the form \arctan(1/k) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/5) | 2 | 4.788... | [0;5,15,6,3,5,3,4,2,65,1,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/6) | 2 | 6.24... | [0;6,18,7,1,1,4,5,62,2,1,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/7) | 2 | 4.076... | [0;7,21,8,1,3,1,8,2,6,1,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/10) | 2 | 4.595... | [0;10,30,12,1,1,7,3,2,1,3,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/4) | 2 | 5.793... | [0;4,12,5,12,1,1,1,3,2,1,...] | Of the form \arctan(1/2k) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/8) | 2 | 3.673... | [0;8,24,10,24,1,77,1,1,5,1,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\arctan(1/16) | 2 | 3.068... | [0;16,48,20,49,1,4,1,3,1,1,...] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
\pi/\sqrt{3} Let \alpha \beta\geq1 \varepsilon>0 q(\varepsilon) \left | \alpha-\frac \right | > \frac 1 \text p,q \text q \geq q(\varepsilon) , then \beta \alpha \beta(\alpha) If no such \beta \alpha Example: The series \varepsilon2e=1+
+\ldots \tau2=
{ba} See alsoExternal links |
The irrationality base is a measure of irrationality introduced by J. Sondow[16]