In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.
Suppose that we have two series
\Sigmanan
\Sigmanbn
an\geq0,bn>0
n
\limn
an | |
bn |
=c
0<c<infty
Because
\limn
an | |
bn |
=c
\varepsilon>0
n0
n\geqn0
\left|
an | |
bn |
-c\right|<\varepsilon
-\varepsilon<
an | |
bn |
-c<\varepsilon
c-\varepsilon<
an | |
bn |
<c+\varepsilon
(c-\varepsilon)bn<an<(c+\varepsilon)bn
c>0
\varepsilon
c-\varepsilon
bn<
1 | |
c-\varepsilon |
an
\sumnan
\sumnbn
Similarly
an<(c+\varepsilon)bn
\sumnan
\sumnbn
That is, both series converge or both series diverge.
We want to determine if the series
infty | |
\sum | |
n=1 |
1 | |
n2+2n |
infty | |
\sum | |
n=1 |
1 | |
n2 |
=
\pi2 | |
6 |
As
\limn
1 | |
n2+2n |
n2 | |
1 |
=1>0
One can state a one-sided comparison test by using limit superior. Let
an,bn\geq0
n
\limsupn
an | |
bn |
=c
0\leqc<infty
\Sigmanbn
\Sigmanan
Let
an=
1-(-1)n | |
n2 |
bn=
1 | |
n2 |
n
\limn\toinfty
an | |
bn |
=\limn\toinfty(1-(-1)n)
\limsupn\toinfty
an | |
bn |
=\limsupn\toinfty(1-(-1)n)=2\in[0,infty)
infty | |
\sum | |
n=1 |
1 | |
n2 |
infty | |
\sum | |
n=1 |
1-(-1)n | |
n2 |
Let
an,bn\geq0
n
\Sigmanan
\Sigmanbn
\limsupn\toinfty
an | |
bn |
=infty
\liminfn\toinfty
bn | |
an |
=0
an
bn
Let
infty | |
f(z)=\sum | |
n=0 |
n | |
a | |
nz |
D=\{z\inC:|z|<1\}
f
infty | |
\sum | |
n=1 |
2 | |
n|a | |
n| |
infty | |
\sum | |
n=1 |
1/n
\liminfn\toinfty
| |||||||
1/n |
=\liminfn\toinfty
2 | |
(n|a | |
n|) |
=0
\liminfn\toinftyn|an|=0