In physics, the Lieb–Liniger model describes a gas of particles moving in one dimension and satisfying Bose–Einstein statistics. More specifically, it describes a one dimensional Bose gas with Dirac delta interactions. t is named after Elliott H. Lieb and Werner Liniger who introduced the model in 1963.[1] The model was developed to compare and test Nikolay Bogolyubov's theory of a weakly interaction Bose gas.
Given
N
x
[0,L]
\psi(x1,x2,...,xj,...,xN)
H=
N | |
-\sum | |
i=1 |
\partial2 | ||||||||
|
+2c
N | |
\sum | |
j>i |
\delta(xi-xj) ,
where
\delta
c
c>0
c<0
c\toinfty
For a collection of bosons, the wave function is unchanged under permutation of any two particles (permutation symmetry), i.e.,
\psi(...,xi,...,xj,...)=\psi(...,xj,...,xi,...)
i ≠ j
\psi
\psi(...,xj=0,...)=\psi(...,xj=L,...)
j
The delta function in the Hamiltonian gives rise to a boundary condition when two coordinates, say
x1
x2
x2\searrowx1
\left.\left( | \partial |
\partialx2 |
-
\partial | |
\partialx1 |
\right)\psi(x1,x2)\right|
x2=x1+ |
=c\psi(x1=x2)
H\psi=E\psi
\psi
\psi
l{R}
0\leqx1\leqx2\leq...,\leqxN\leqL
The solution can be written in the form of a Bethe ansatz as[3]
\psi(x1,...,xN)=\sumPa(P)\exp\left(i
N | |
\sum | |
j=1 |
kPxj\right)
with wave vectors
0\leqk1\leqk2\leq...,\leqkN
N!
P
1,2,...,N
P
1,2,...,N
P1,P2,...,PN
a(P)
k
H\psi=E\psi
E=
N | |
\sum | |
j=1 |
2 | |
k | |
j |
a(P)=\prod1\leq\left(1+
ic | |
kPi-kPj |
\right).
These equations determine
\psi
k
N
Lkj=2\piIj -2
N | |
\sum | |
i=1 |
\arctan\left(
kj-ki | |
c |
\right) forj=1,...,N ,
where
I1<I2< … <IN
N
N
\pm
12, | |
\pm |
32, | |
... |
I
Ij+1-Ij=1, {\rmfor} 1\leqj<N andI1=-IN.