In differential geometry, a Lie-algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.
A Lie-algebra-valued differential
k
M
(ak{g} x M) ⊗ \wedgekT*M
ak{g}
T*M
M
\wedgek
kth
The wedge product of ordinary, real-valued differential forms is defined using multiplication of real numbers. For a pair of Lie algebra–valued differential forms, the wedge product can be defined similarly, but substituting the bilinear Lie bracket operation, to obtain another Lie algebra–valued form. For a
ak{g}
p
\omega
ak{g}
q
η
[\omega\wedgeη]
[\omega\wedgeη](v1,...c,vp+q)={1\overp!q!}\sum\sigma\operatorname{sgn}(\sigma)[\omega(v\sigma(1),...c,v\sigma(p)),η(v\sigma(p+1),...c,v\sigma(p+q))],
vi
\omega
η
[\omega\wedgeη](v1,v2)=[\omega(v1),η(v2)]-[\omega(v2),η(v1)].
The operation
[\omega\wedgeη]
\Omega(M,ak{g})
[(g ⊗ \alpha)\wedge(h ⊗ \beta)]=[g,h] ⊗ (\alpha\wedge\beta)
g,h\inak{g}
\alpha,\beta\in\Omega(M,R)
Some authors have used the notation
[\omega,η]
[\omega\wedgeη]
[\omega,η]
akg
[\omega\wedgeη]
\omega
η
\omega\in\Omegap(M,akg)
η\in\Omegaq(M,akg)
[\omega\wedgeη]=\omega\wedgeη-(-1)pqη\wedge\omega,
\omega\wedgeη, η\wedge\omega\in\Omegap+q(M,akg)
akg
Let
f:ak{g}\toak{h}
\varphi
ak{g}
f(\varphi)
ak{h}
f
\varphi
f(\varphi)(v1,...c,vk)=f(\varphi(v1,...c,vk))
Similarly, if
f
k | |
style\prod | |
1 |
ak{g}
f(\varphi1,...c,\varphik)(v1,...c,vq)={1\overq!}\sum\sigma\operatorname{sgn}(\sigma)f(\varphi1(v\sigma(1),...c,
v | |
\sigma(q1) |
),...c,\varphik(v
\sigma(q-qk+1) |
,...c,v\sigma(q)))
q=q1+\ldots+qk
\varphii
ak{g}
qi
V
V
f(\varphi,η)
f:ak{g} x V\toV
\varphi
ak{g}
η
V
f([x,y],z)=f(x,f(y,z))-f(y,f(x,z)){,} (*)
f
ak{g}
V
f
\rho:ak{g}\toV,\rho(x)y=f(x,y)
\rho
f
(*)
f(x,y)=[x,y]
ak{g}
[ ⋅ \wedge ⋅ ]
\rho=\operatorname{ad}
f
\rho
\operatorname{ad}
In general, if
\alpha
ak{gl}(V)
p
\varphi
V
q
\alpha ⋅ \varphi=f(\alpha,\varphi)
f(T,x)=Tx
(\alpha ⋅ \phi)(v1,...c,vp+q)={1\over(p+q)!}\sum\sigma\operatorname{sgn}(\sigma)\alpha(v\sigma(1),...c,v\sigma(p))\phi(v\sigma(p+1),...c,v\sigma(p+q)).
\operatorname{ad}(\alpha) ⋅ \phi=[\alpha\wedge\phi]
Example: If
\omega
ak{g}
\rho
ak{g}
V
\varphi
V
\rho([\omega\wedge\omega]) ⋅ \varphi=2\rho(\omega) ⋅ (\rho(\omega) ⋅ \varphi).
See also: adjoint bundle. Let
P
G
ak{g}=\operatorname{Lie}(G)
G
ak{g}
ak{g}P=P x \operatorname{Ad
ak{g}P
P
P
\rho([\omega\wedge\omega])(v,w)=\rho([\omega\wedge\omega](v,w))=\rho([\omega(v),\omega(w)])=\rho(\omega(v))\rho(\omega(w))-\rho(\omega(w))\rho(\omega(v))
(\rho([\omega\wedge\omega]) ⋅ \varphi)(v,w)={1\over2}(\rho([\omega\wedge\omega])(v,w)\varphi-\rho([\omega\wedge\omega])(w,v)\phi)
\rho(\omega(v))\rho(\omega(w))\varphi-\rho(\omega(w))\rho(\omega(v))\phi=2(\rho(\omega) ⋅ (\rho(\omega) ⋅ \phi))(v,w).