In field theory, a branch of mathematics, the Stufe (/ʃtuːfə/; German: level) s(F) of a field F is the least number of squares that sum to −1. If −1 cannot be written as a sum of squares, s(F) =
infty
If
s(F)\neinfty
s(F)=2k
k
Proof: Let
k\inN
2k\leqs(F)<2k+1
n=2k
s=s(F)
e1,\ldots,es\inF\setminus\{0\}
0=\underbrace{1+
2 | |
e | |
1 |
+ … +
2 | |
e | |
n-1 |
}=:a+
2 | |
\underbrace{e | |
n |
+ … +
2} | |
e | |
=:b |
.
Both
a
b
n
a\ne0
s(F)<2k
k
According to the theory of Pfister forms, the product
ab
n
ab=
2 | |
c | |
1 |
+ … +
2 | |
c | |
n |
ci\inF
a+b=0
-a2=ab
-1=
ab | |
a2 |
=\left(
c1 | |
a |
\right)2+ … +\left(
cn | |
a |
\right)2,
and thus
s(F)=n=2k
Any field
F
s(F)\le2
Proof: Let
p=\operatorname{char}(F)
Fp
If
p=2
-1=1=12
s(F)=1
If
p>2
S=\{x2:x\inFp\}
S\setminus\{0\}
2
x | |
F | |
p |
p-1
S
\tfrac{p+1}2
-1-S
Fp
p
S
-1-S
x,y\inFp
S\nix2=-1-y2\in-1-S
-1=x2+y2
The Stufe s(F) is related to the Pythagoras number p(F) by p(F) ≤ s(F) + 1.[4] If F is not formally real then s(F) ≤ p(F) ≤ s(F) + 1.[5] [6] The additive order of the form (1), and hence the exponent of the Witt group of F is equal to 2s(F).[7] [8]
. Introduction to Quadratic Forms over Fields . 67 . . Tsit Yuen Lam . American Mathematical Society . 2005 . 0-8218-1095-2 . 1068.11023 .