The Lesk algorithm is a classical algorithm for word sense disambiguation introduced by Michael E. Lesk in 1986.[1] It operates on the premise that words within a given context are likely to share a common meaning. This algorithm compares the dictionary definitions of an ambiguous word with the words in its surrounding context to determine the most appropriate sense. Variations, such as the Simplified Lesk algorithm, have demonstrated improved precision and efficiency. However, the Lesk algorithm has faced criticism for its sensitivity to definition wording and its reliance on brief glosses. Researchers have sought to enhance its accuracy by incorporating additional resources like thesauruses and syntactic models.
The Lesk algorithm is based on the assumption that words in a given "neighborhood" (section of text) will tend to share a common topic. A simplified version of the Lesk algorithm is to compare the dictionary definition of an ambiguous word with the terms contained in its neighborhood. Versions have been adapted to use WordNet.[2] An implementation might look like this:
A frequently used example illustrating this algorithm is for the context "pine cone". The following dictionary definitions are used: PINE 1. kinds of evergreen tree with needle-shaped leaves 2. waste away through sorrow or illness
CONE 1. solid body which narrows to a point 2. something of this shape whether solid or hollow 3. fruit of certain evergreen treesAs can be seen, the best intersection is Pine #1 ⋂ Cone #3 = 2.
In Simplified Lesk algorithm,[3] the correct meaning of each word in a given context is determined individually by locating the sense that overlaps the most between its dictionary definition and the given context. Rather than simultaneously determining the meanings of all words in a given context, this approach tackles each word individually, independent of the meaning of the other words occurring in the same context.
"A comparative evaluation performed by Vasilescu et al. (2004)[4] has shown that the simplified Lesk algorithm can significantly outperform the original definition of the algorithm, both in terms of precision and efficiency. By evaluating the disambiguation algorithms on the Senseval-2 English all words data, they measure a 58% precision using the simplified Lesk algorithm compared to the only 42% under the original algorithm.
Note: Vasilescu et al. implementation considers a back-off strategy for words not covered by the algorithm, consisting of the most frequent sense defined in WordNet. This means that words for which all their possible meanings lead to zero overlap with current context or with other word definitions are by default assigned sense number one in WordNet."[5]
Simplified LESK Algorithm with smart default word sense (Vasilescu et al., 2004)[6]
function SIMPLIFIED LESK(word,sentence) returns best sense of word best-sense <- most frequent sense for word max-overlap <- 0 context <- set of words in sentence for each sense in senses of word do signature <- set of words in the gloss and examples of sense overlap <- COMPUTEOVERLAP (signature,context) if overlap > max-overlap then max-overlap <- overlap best-sense <- sense end return (best-sense) |
Unfortunately, Lesk’s approach is very sensitive to the exact wording of definitions, so the absence of a certain word can radically change the results. Further, the algorithm determines overlaps only among the glosses of the senses being considered. This is a significant limitation in that dictionary glosses tend to be fairly short and do not provide sufficient vocabulary to relate fine-grained sense distinctions.
A lot of work has appeared offering different modifications of this algorithm. These works use other resources for analysis (thesauruses, synonyms dictionaries or morphological and syntactic models): for instance, it may use such information as synonyms, different derivatives, or words from definitions of words from definitions.[7]
There are a lot of studies concerning Lesk and its extensions:[9]