In mathematics, the Lerch zeta function, sometimes called the Hurwitz - Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.
The Lerch zeta function is given by
L(λ,s,\alpha)=
| ||||
\sum | ||||
n=0 |
.
A related function, the Lerch transcendent, is given by
\Phi(z,s,\alpha)=
| ||||
\sum | ||||
n=0 |
The transcendent only converges for any real number
\alpha>0
|z|<1
ak{R}(s)>1
|z|=1
The two are related, as
\Phi(e2\pi,s,\alpha)=L(λ,s,\alpha).
The Lerch transcendent has an integral representation:
\Phi(z,s,a)= | 1 |
\Gamma(s) |
| ||||
\int | ||||
0 |
dt
\Phi(z,s,a)\Gamma(s) =
infty | |
\sum | |
n=0 |
zn | |
(n+a)s |
infty | |
\int | |
0 |
xse-x
dx | |
x |
=
infty | |
\sum | |
n=0 |
infty | |
\int | |
0 |
tszne-(n+a)t
dt | |
t |
z\in\Complex\setminus[1,infty),
\Phi(z,s,a)
A contour integral representation is given by
\Phi(z,s,a)=- | \Gamma(1-s) |
2\pii |
\intC
(-t)s-1e-at | |
1-ze-t |
dt
t=log(z)+2k\pii
A Hermite-like integral representation is given by
\Phi(z,s,a)= | 1 |
2as |
infty | |
+ \int | |
0 |
zt | dt+ | |
(a+t)s |
2 | |
as-1 |
| ||||
\int | ||||
0 |
dt
\Re(a)>0\wedge|z|<1
\Phi(z,s,a)= | 1 | + |
2as |
logs-1(1/z) | \Gamma(1-s,alog(1/z))+ | |
za |
2 | |
as-1 |
| ||||
\int | ||||
0 |
dt
\Re(a)>0.
Similar representations include
\Phi(z,s,a)=
1 | |
2as |
+
infty | |
\int | |
0 |
\cos(tlogz)\sin(s\arctan\tfrac{t | |
a |
)-\sin(tlogz)\cos(s\arctan\tfrac{t}{a})}{(a2+t2)
| ||||
\tanh\pit}dt,
and
\Phi(-z,s,a)=
1 | |
2as |
+
infty | |
\int | |
0 |
\cos(tlogz)\sin(s\arctan\tfrac{t | |
a |
)-\sin(tlogz)\cos(s\arctan\tfrac{t}{a})}{(a2+t2)
| ||||
\sinh\pit}dt,
holding for positive z (and more generally wherever the integrals converge). Furthermore,
\Phi(ei\varphi,s,a)=L(\tfrac{\varphi}{2\pi},s,a)=
1 | |
as |
+
1 | |
2\Gamma(s) |
infty | |
\int | |
0 |
ts-1e-at(ei\varphi-e-t) | |
\cosh{t |
-\cos{\varphi}}dt,
The last formula is also known as Lipschitz formula.
The Lerch zeta function and Lerch transcendent generalize various special functions.
The Hurwitz zeta function is the special case
\zeta(s,\alpha)=L(0,s,\alpha)=\Phi(1,s,\alpha)=
infty | |
\sum | |
n=0 |
1 | |
(n+\alpha)s |
.
rm{Li}s(z)=z\Phi(z,s,1)=
infty | |
\sum | |
n=1 |
zn | |
ns |
.
\zeta(s)=\Phi(1,s,1)=
infty | |
\sum | |
n=1 |
1 | |
ns |
Other special cases include:
η(s)=\Phi(-1,s,1)=
infty | |
\sum | |
n=1 |
(-1)n-1 | |
ns |
\beta(s)=2-s\Phi(-1,s,1/2)=
infty | |
\sum | |
k=0 |
(-1)k | |
(2k+1)s |
-s | |
\chi | |
s(z)=2 |
z\Phi(z2,s,1/2)=
infty | |
\sum | |
k=0 |
z2k+1 | |
(2k+1)s |
\psi(n)(\alpha)=(-1)n+1n!\Phi(1,n+1,\alpha)
For λ rational, the summand is a root of unity, and thus
L(λ,s,\alpha)
p,q\in\Z
q>0
z=\omega=
| ||||||
e |
\omegaq=1
\Phi(\omega,s,\alpha)=
| ||||
\sum | ||||
n=0 |
=
q-1 | |
\sum | |
m=0 |
infty | |
\sum | |
n=0 |
\omegaqn | |
(qn+m+\alpha)s |
=
q-1 | |
\sum | |
m=0 |
\omegamq-s\zeta\left(s,
m+\alpha | |
q |
\right)
Various identities include:
\Phi(z,s,a)=zn\Phi(z,s,a+n)+
n-1 | |
\sum | |
k=0 |
zk | |
(k+a)s |
and
\Phi(z,s-1,a)=\left(a+z | \partial |
\partialz |
\right)\Phi(z,s,a)
and
\Phi(z,s+1,a)=- | 1 |
s |
\partial | |
\partiala |
\Phi(z,s,a).
A series representation for the Lerch transcendent is given by
\Phi(z,s,q)= | 1 |
1-z |
infty | ||
\sum | \left( | |
n=0 |
-z | |
1-z |
n | |
\right) | |
k=0 |
(-1)k\binom{n}{k}(q+k)-s.
\tbinom{n}{k}
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[2]
A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for[3]
\left|log(z)\right|<2\pi;s ≠ 1,2,3,...;a ≠ 0,-1,-2,...
\Phi(z,s,a)=z-a\left[\Gamma(1-s)\left(-log(z)\right)s-1
infty | ||
+\sum | \zeta(s-k,a) | |
k=0 |
logk(z) | |
k! |
\right]
If n is a positive integer, then
\Phi(z,n,a)=z-a\left\{ \sum{k=0\atopk ≠ n-1}infty\zeta(n-k,a)
logk(z) | +\left[\psi(n)-\psi(a)-log(-log(z))\right] | |
k! |
logn-1(z) | |
(n-1)! |
\right\},
\psi(n)
A Taylor series in the third variable is given by
infty | |
\Phi(z,s,a+x)=\sum | |
k=0 |
\Phi(z,s+k,a)(s)k
(-x)k | |
k! |
;|x|<\Re(a),
(s)k
Series at a = −n is given by
n | |
\Phi(z,s,a)=\sum | |
k=0 |
zk | |
(a+k)s |
infty | |
+z | |
m=0 |
(1-m-s)m\operatorname{Li}s+m(z)
(a+n)m | |
m! |
; a → -n
A special case for n = 0 has the following series
\Phi(z,s,a)= | 1 |
as |
infty | |
+\sum | |
m=0 |
(1-m-s)m\operatorname{Li}s+m(z)
am | |
m! |
;|a|<1,
\operatorname{Li}s(z)
An asymptotic series for
s → -infty
\Phi(z,s,a)=z-a
infty | |
\Gamma(1-s)\sum | |
k=-infty |
[2k\pii-log(z)]s-1e2k\pi
|a|<1;\Re(s)<0;z\notin(-infty,0)
\Phi(-z,s,a)=z-a
infty [(2k+1)\pi | |
\Gamma(1-s)\sum | |
k=-infty |
i-log(z)]s-1e(2k+1)\pi
|a|<1;\Re(s)<0;z\notin(0,infty).
An asymptotic series in the incomplete gamma function
\Phi(z,s,a)= | 1 | + |
2as |
1 | |
za |
| |||||
\sum | + | ||||
k=1 |
e2\pi\Gamma(1-s,a(2\piik-log(z))) | |
(2\piik-log(z))1-s |
|a|<1;\Re(s)<0.
The representation as a generalized hypergeometric function is[4]
\Phi(z,s,\alpha)= | 1 |
\alphas |
{}s+1Fs\left(\begin{array}{c} 1,\alpha,\alpha,\alpha, … \\ 1+\alpha,1+\alpha,1+\alpha, … \\ \end{array}\midz\right).
The polylogarithm function
Lin(z)
Li | ||||
|
, Li-n(z)=z
d | |
dz |
Li1-n(z).
\Omegaa\equiv\begin{cases} C\setminus[1,infty)&if\Rea>0,\\ {z\inC,|z|<1}&if\Rea\le0. \end{cases}
|Arg(a)|<\pi,s\inC
z\in\Omegaa
\Phi(z,s,a)
a
s
z
\Phi(z,s,a)=
1 | |
1-z |
1 | |
as |
+
N-1 | |
\sum | |
n=1 |
(-1)nLi-n(z) | |
n! |
(s)n | |
an+s |
+O(a-N-s)
N\inN
(s)n=s(s+1) … (s+n-1)
Let
f(z,x,a)\equiv
1-(ze-x)1-a | |
1-ze-x |
.
Cn(z,a)
x=0
N\inN,\Rea>1
\Res>0
\Phi(z,s,a)-
Lis(z) | |
za |
N-1 | |
= \sum | |
n=0 |
Cn(z,a)
(s)n | |
an+s |
+ O\left((\Rea)1-N-s+az-\Re\right),
\Rea\toinfty
The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.