Lerch zeta function explained

In mathematics, the Lerch zeta function, sometimes called the Hurwitz - Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

Definition

The Lerch zeta function is given by

L(λ,s,\alpha)=

infty e2\pi
(n+\alpha)s
\sum
n=0

.

A related function, the Lerch transcendent, is given by

\Phi(z,s,\alpha)=

infty zn
(n+\alpha)s
\sum
n=0
.

The transcendent only converges for any real number

\alpha>0

, where:

|z|<1

, or

ak{R}(s)>1

, and

|z|=1

.[1]

The two are related, as

\Phi(e2\pi,s,\alpha)=L(λ,s,\alpha).

Integral representations

The Lerch transcendent has an integral representation:

\Phi(z,s,a)=1
\Gamma(s)
infty ts-1e-at
1-ze-t
\int
0

dt

The proof is based on using the integral definition of the Gamma function to write

\Phi(z,s,a)\Gamma(s) =

infty
\sum
n=0
zn
(n+a)s
infty
\int
0

xse-x

dx
x

=

infty
\sum
n=0
infty
\int
0

tszne-(n+a)t

dt
t
and then interchanging the sum and integral. The resulting integral representation converges for

z\in\Complex\setminus[1,infty),

Re(s) > 0, and Re(a) > 0. This analytically continues

\Phi(z,s,a)

to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.

A contour integral representation is given by

\Phi(z,s,a)=-\Gamma(1-s)
2\pii

\intC

(-t)s-1e-at
1-ze-t

dt

where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points

t=log(z)+2k\pii

(for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.

Other integral representations

A Hermite-like integral representation is given by

\Phi(z,s,a)= 1
2as
infty
+ \int
0
ztdt+
(a+t)s
2
as-1
infty \sin(s\arctan(t)-talog(z))
(1+t2)s/2(e2\pi-1)
\int
0

dt

for

\Re(a)>0\wedge|z|<1

and
\Phi(z,s,a)=1+
2as
logs-1(1/z)\Gamma(1-s,alog(1/z))+
za
2
as-1
infty \sin(s\arctan(t)-talog(z))
(1+t2)s/2(e2\pi-1)
\int
0

dt

for

\Re(a)>0.

Similar representations include

\Phi(z,s,a)=

1
2as

+

infty
\int
0
\cos(tlogz)\sin(s\arctan\tfrac{t
a

)-\sin(tlogz)\cos(s\arctan\tfrac{t}{a})}{(a2+t2)

s
2

\tanh\pit}dt,

and

\Phi(-z,s,a)=

1
2as

+

infty
\int
0
\cos(tlogz)\sin(s\arctan\tfrac{t
a

)-\sin(tlogz)\cos(s\arctan\tfrac{t}{a})}{(a2+t2)

s
2

\sinh\pit}dt,

holding for positive z (and more generally wherever the integrals converge). Furthermore,

\Phi(ei\varphi,s,a)=L(\tfrac{\varphi}{2\pi},s,a)=

1
as

+

1
2\Gamma(s)
infty
\int
0
ts-1e-at(ei\varphi-e-t)
\cosh{t

-\cos{\varphi}}dt,

The last formula is also known as Lipschitz formula.

Special cases

The Lerch zeta function and Lerch transcendent generalize various special functions.

The Hurwitz zeta function is the special case

\zeta(s,\alpha)=L(0,s,\alpha)=\Phi(1,s,\alpha)=

infty
\sum
n=0
1
(n+\alpha)s

.

The polylogarithm is another special case:

rm{Li}s(z)=z\Phi(z,s,1)=

infty
\sum
n=1
zn
ns

.

The Riemann zeta function is a special case of both of the above:

\zeta(s)=\Phi(1,s,1)=

infty
\sum
n=1
1
ns

Other special cases include:

η(s)=\Phi(-1,s,1)=

infty
\sum
n=1
(-1)n-1
ns

\beta(s)=2-s\Phi(-1,s,1/2)=

infty
\sum
k=0
(-1)k
(2k+1)s
-s
\chi
s(z)=2

z\Phi(z2,s,1/2)=

infty
\sum
k=0
z2k+1
(2k+1)s

\psi(n)(\alpha)=(-1)n+1n!\Phi(1,n+1,\alpha)

Identities

For λ rational, the summand is a root of unity, and thus

L(λ,s,\alpha)

may be expressed as a finite sum over the Hurwitz zeta function. Suppose \lambda = \frac with

p,q\in\Z

and

q>0

. Then

z=\omega=

2\pii
p
q
e
and

\omegaq=1

.

\Phi(\omega,s,\alpha)=

infty \omegan
(n+\alpha)s
\sum
n=0

=

q-1
\sum
m=0
infty
\sum
n=0
\omegaqn
(qn+m+\alpha)s

=

q-1
\sum
m=0

\omegamq-s\zeta\left(s,

m+\alpha
q

\right)

Various identities include:

\Phi(z,s,a)=zn\Phi(z,s,a+n)+

n-1
\sum
k=0
zk
(k+a)s

and

\Phi(z,s-1,a)=\left(a+z\partial
\partialz

\right)\Phi(z,s,a)

and

\Phi(z,s+1,a)=-1
s
\partial
\partiala

\Phi(z,s,a).

Series representations

A series representation for the Lerch transcendent is given by

\Phi(z,s,q)=1
1-z
infty
\sum\left(
n=0
-z
1-z
n
\right)
k=0

(-1)k\binom{n}{k}(q+k)-s.

(Note that

\tbinom{n}{k}

is a binomial coefficient.)

The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[2]

A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for[3]

\left|log(z)\right|<2\pi;s1,2,3,...;a0,-1,-2,...

\Phi(z,s,a)=z-a\left[\Gamma(1-s)\left(-log(z)\right)s-1

infty
+\sum\zeta(s-k,a)
k=0
logk(z)
k!

\right]

If n is a positive integer, then

\Phi(z,n,a)=z-a\left\{ \sum{k=0\atopkn-1}infty\zeta(n-k,a)

logk(z)+\left[\psi(n)-\psi(a)-log(-log(z))\right]
k!
logn-1(z)
(n-1)!

\right\},

where

\psi(n)

is the digamma function.

A Taylor series in the third variable is given by

infty
\Phi(z,s,a+x)=\sum
k=0

\Phi(z,s+k,a)(s)k

(-x)k
k!

;|x|<\Re(a),

where

(s)k

is the Pochhammer symbol.

Series at a = −n is given by

n
\Phi(z,s,a)=\sum
k=0
zk
(a+k)s
infty
+z
m=0

(1-m-s)m\operatorname{Li}s+m(z)

(a+n)m
m!

;a → -n

A special case for n = 0 has the following series

\Phi(z,s,a)=1
as
infty
+\sum
m=0

(1-m-s)m\operatorname{Li}s+m(z)

am
m!

;|a|<1,

where

\operatorname{Li}s(z)

is the polylogarithm.

An asymptotic series for

s → -infty

\Phi(z,s,a)=z-a

infty
\Gamma(1-s)\sum
k=-infty

[2k\pii-log(z)]s-1e2k\pi

for

|a|<1;\Re(s)<0;z\notin(-infty,0)

and

\Phi(-z,s,a)=z-a

infty [(2k+1)\pi
\Gamma(1-s)\sum
k=-infty

i-log(z)]s-1e(2k+1)\pi

for

|a|<1;\Re(s)<0;z\notin(0,infty).

An asymptotic series in the incomplete gamma function

\Phi(z,s,a)=1+
2as
1
za
infty e-2\pi\Gamma(1-s,a(-2\pii(k-1)-log(z)))
(-2\pii(k-1)-log(z))1-s
\sum+
k=1
e2\pi\Gamma(1-s,a(2\piik-log(z)))
(2\piik-log(z))1-s

for

|a|<1;\Re(s)<0.

The representation as a generalized hypergeometric function is[4]

\Phi(z,s,\alpha)=1
\alphas

{}s+1Fs\left(\begin{array}{c} 1,\alpha,\alpha,\alpha,\\ 1+\alpha,1+\alpha,1+\alpha,\\ \end{array}\midz\right).

Asymptotic expansion

The polylogarithm function

Lin(z)

is defined as
Li
0(z)=z
1-z

,    Li-n(z)=z

d
dz

Li1-n(z).

Let

\Omegaa\equiv\begin{cases} C\setminus[1,infty)&if\Rea>0,\\ {z\inC,|z|<1}&if\Rea\le0. \end{cases}

For

|Arg(a)|<\pi,s\inC

and

z\in\Omegaa

, an asymptotic expansion of

\Phi(z,s,a)

for large

a

and fixed

s

and

z

is given by

\Phi(z,s,a)=

1
1-z
1
as

+

N-1
\sum
n=1
(-1)nLi-n(z)
n!
(s)n
an+s

+O(a-N-s)

for

N\inN

, where

(s)n=s(s+1)(s+n-1)

is the Pochhammer symbol.[5]

Let

f(z,x,a)\equiv

1-(ze-x)1-a
1-ze-x

.

Let

Cn(z,a)

be its Taylor coefficients at

x=0

. Then for fixed

N\inN,\Rea>1

and

\Res>0

,

\Phi(z,s,a)-

Lis(z)
za
N-1
= \sum
n=0

Cn(z,a)

(s)n
an+s

+ O\left((\Rea)1-N-s+az-\Re\right),

as

\Rea\toinfty

.[6]

Software

The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.

References

External links

Notes and References

  1. https://arxiv.org/pdf/math/0506319.pdf
  2. Web site: The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function . 27 April 2020 . 28 April 2020.
  3. B. R. Johnson . Generalized Lerch zeta function . Pacific J. Math. . 53 . 1 . 1974 . 189–193 . 10.2140/pjm.1974.53.189 . free.
  4. J. E.. Gottschalk. E. N. . Maslen. Reduction formulae for generalized hypergeometric functions of one variable. J. Phys. A . 1988. 21. 9. 1983–1998. 10.1088/0305-4470/21/9/015. 1988JPhA...21.1983G.
  5. Ferreira . Chelo . López . José L. . Asymptotic expansions of the Hurwitz–Lerch zeta function . Journal of Mathematical Analysis and Applications . October 2004 . 298 . 1 . 210–224 . 10.1016/j.jmaa.2004.05.040. free .
  6. Cai . Xing Shi . López . José L. . A note on the asymptotic expansion of the Lerch's transcendent . Integral Transforms and Special Functions . 10 June 2019 . 30 . 10 . 844–855 . 10.1080/10652469.2019.1627530. 1806.01122 . 119619877 .