Lentivirus is a genus of retroviruses that cause chronic and deadly diseases characterized by long incubation periods, in humans and other mammalian species.[1] The genus includes the human immunodeficiency virus (HIV), which causes AIDS. Lentiviruses are distributed worldwide, and are known to be hosted in apes, cows, goats, horses, cats, and sheep as well as several other mammals.
Lentiviruses can integrate a significant amount of viral complementary DNA into the DNA of the host cell and can efficiently infect nondividing cells, so they are one of the most efficient methods of gene delivery.[2] They can become endogenous, integrating their genome into the host germline genome, so that the virus is henceforth inherited by the host's descendants.
Five serogroups of lentiviruses are recognized, reflecting the vertebrate hosts with which they are associated (primates, sheep and goats, horses, domestic cats, and cattle).[3] The primate lentiviruses are distinguished by the use of CD4 protein as a receptor and the absence of dUTPase.[4] Some groups have cross-reactive gags (group-specific antigens) (e.g., the ovine, caprine, and feline lentiviruses). Antibodies to gags in lions and other large felines indicate the existence of another yet-to-be identified virus related to feline lentivirus and the ovine/caprine lentiviruses.
The virions are enveloped viruses 80–100 nm in diameter. They are spherical or pleomorphic, with capsid cores that mature to a cylindrical or conical shape.[5] Projections of envelope make the surface appear rough, or tiny spikes (about 8 nm) may be dispersed evenly over the surface.[6]
Lentiviruses contain 2 sense, single-strand RNAs that are bound by nucleocapsid proteins.[7] As with all retroviruses, lentiviruses have gag, pol and env genes, coding for viral proteins in the order: 5´-gag-pol-env-3´. Unlike other retroviruses, however, lentiviruses have two regulatory genes, tat and rev. They may also have additional accessory genes depending on the virus (e.g., for HIV-1: vif, vpr, vpu, nef) whose products are involved in regulation of synthesis and processing viral RNA and other replicative functions. The long terminal repeat (LTR) is about 600 nt long, of which the U3 region is 450, the R sequence 100 and the U5 region some 70 nt long.
Retroviruses carry proteins within their capsids, which bind the RNA genome. These proteins are typically involved in the early stages of genome replication, and include reverse transcriptase and integrase. Reverse transcriptase is the virally encoded RNA-dependent DNA polymerase. The enzyme uses the viral RNA genome as a template for the synthesis of a complementary DNA copy. Reverse transcriptase possesses [RNase H] activity for destruction of the RNA-template. Integrase binds both the viral cDNA generated by reverse transcriptase and the host DNA. It then processes the LTRs before inserting the viral genome into the host DNA. Tat acts as a trans-activator during transcription to enhance initiation and elongation. The Rev responsive element acts post-transcriptionally, regulating mRNA splicing and transport to the cytoplasm.[8]
The lentiviral proteome consists of five major structural proteins and three or four non-structural proteins (three in the primate lentiviruses).
Structural proteins listed by size:
The envelope proteins SU and TM are glycosylated in at least some lentiviruses (HIV, SIV), if not all of them. Glycosylation seems to play a structural role in the concealment and variation of antigenic sites necessary for the host to mount an immune system response.
Enzymes:
Gene regulatory proteins:
Accessory proteins:
Serological relationships: Antigen determinants are type specific and group specific. Antigen determinants that possess type-specific reactivity are found on the envelope. Antigen determinants that possess type-specific reactivity and are involved in antibody mediated neutralization are found on the glycoproteins. Cross-reactivity has been found among some species of the same serotype, but not between members of different genera. Classification of members of this taxon is infrequently based on their antigenic properties.
Classed as having class C morphology
See main article: Lentiviral vector in gene therapy. Lentivirus is primarily a research tool used to introduce a gene product into in vitro systems or animal models. Large-scale collaborative efforts are underway to use lentiviruses to block the expression of a specific gene using RNA interference technology in high-throughput formats.[9] Conversely, lentivirus are also used to stably over-express certain genes, thus allowing researchers to examine the effect of increased gene expression in a model system.
Another common application is to use a lentivirus to introduce a new gene into human or animal cells. For example, a model of mouse hemophilia is corrected by expressing wild-type platelet-factor VIII, the gene that is mutated in human hemophilia.[10] Lentiviral infection has advantages over other gene-therapy methods including high-efficiency infection of dividing and non-dividing cells, long-term stable expression of a transgene, and low immunogenicity.Lentiviruses have also been successfully used for transduction of diabetic mice with the gene encoding PDGF (platelet-derived growth factor),[11] a therapy being considered for use in humans. Finally, lentiviruses have been also used to elicit an immune response against tumor antigens.[12] These treatments, like most current gene therapy experiments, show promise but are yet to be established as safe and effective in controlled human studies.Gammaretroviral and lentiviral vectors have so far been used in more than 300 clinical trials, addressing treatment options for various diseases.[13]