In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If
A
n x n
aij
i
j
A
\det(A)=
\sum | |
\tau\inSn |
sgn(\tau)
n | |
\prod | |
i=1 |
ai\tau(i)=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\prod | |
i=1 |
a\sigma(i)i
sgn
Sn
+1
-1
Another common notation used for the formula is in terms of the Levi-Civita symbol and makes use of the Einstein summation notation, where it becomes
\det(A)=
\epsilon | |
i1 … in |
{a} | |
1i1 |
…
{a} | |
nin |
,
Directly evaluating the Leibniz formula from the definition requires
\Omega(n! ⋅ n)
n
n!
n
n
O(n3)
A=LU
\detA=\detL ⋅ \detU
L
U
O(n3)
Theorem.There exists exactly one function
F:Mn(K) → K
F(I)=1
Proof.
Uniqueness: Let
F
A=
j=1,...,n | |
(a | |
i=1,...,n |
n x n
Aj
j
A
Aj=
j) | |
(a | |
i=1,...,n |
A=\left(A1,...,An\right).
Also, let
Ek
k
Now one writes each of the
Aj
Ek
Aj=
n | |
\sum | |
k=1 |
j | |
a | |
k |
Ek
As
F
\begin{align} F(A)&=
n | |
F\left(\sum | |
k1=1 |
1 | |
a | |
k1 |
k1 | |
E |
,...,
n | |
\sum | |
kn=1 |
n | |
a | |
kn |
kn | |
E |
\right)=
n | |
\sum | |
k1,...,kn=1 |
n | |
\left(\prod | |
i=1 |
i\right) | |
a | |
ki |
k1 | |
F\left(E |
,...,
kn | |
E |
\right). \end{align}
From alternation it follows that any term with repeated indices is zero. The sum can therefore be restricted to tuples with non-repeating indices, i.e. permutations:
F(A)=
\sum | |
\sigma\inSn |
n | |
\left(\prod | |
i=1 |
i\right) | |
a | |
\sigma(i) |
F(E\sigma(1),...,E\sigma(n)).
Because F is alternating, the columns
E
sgn(\sigma)
\begin{align} F(A)&=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\left(\prod | |
i=1 |
i\right) | |
a | |
\sigma(i) |
F(I)\\ &=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\prod | |
i=1 |
i \end{align} | |
a | |
\sigma(i) |
as
F(I)
1
Therefore no function besides the function defined by the Leibniz Formula can be a multilinear alternating function with
F\left(I\right)=1
Existence: We now show that F, where F is the function defined by the Leibniz formula, has these three properties.
\begin{align} F(A1,...,cAj,...)&=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
ca | |
i=1,i ≠ j |
i\\ & | |
a | |
\sigma(i) |
=c
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
a | |
i=1,i ≠ j |
i\\ &=c | |
a | |
\sigma(i) |
F(A1,...,Aj,...)\\ \\ F(A1,...,b+Aj,...)&=
\sum | |
\sigma\inSn |
sgn(\sigma)\left(b\sigma(j)+
n | |
a | |
i=1,i ≠ j |
i\\ & | |
a | |
\sigma(i) |
=
\sum | |
\sigma\inSn |
sgn(\sigma) \left(\left(b\sigma(j)
n | |
\prod | |
i=1,i ≠ j |
i\right) | |
a | |
\sigma(i) |
+
n | |
\left(a | |
i=1,i ≠ j |
i\right)\right)\\ & | |
a | |
\sigma(i) |
=
\left(\sum | |
\sigma\inSn |
sgn(\sigma)b\sigma(j)
n | |
\prod | |
i=1,i ≠ j |
i\right) | |
a | |
\sigma(i) |
+
\left(\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\prod | |
i=1 |
i\right)\\ &= | |
a | |
\sigma(i) |
F(A1,...,b,...)+F(A1,...,Aj,...)\\ \\ \end{align}
\begin{align} F(...,
j1 | |
A |
,...,
j2 | |
A |
,...) &=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\left(\prod | |
i=1,i ≠ j1,i ≠ j2 |
i\right) | |
a | |
\sigma(i) |
j1 | |
a | |
\sigma(j1) |
j2 | |
a | |
\sigma(j2) |
\\ \end{align}
\sigma\inSn
\sigma'
\sigma
j1
j2
\begin{align} F(A)&=
\sum | |
\sigma\inSn,\sigma(j1)<\sigma(j2) |
i | |
\left[sgn(\sigma)\left(\prod | |
\sigma(i) |
j1 | |
\right)a | |
\sigma(j1) |
j2 | |
a | |
\sigma(j2) |
i | |
+sgn(\sigma')\left(\prod | |
\sigma'(i) |
j1 | |
\right)a | |
\sigma'(j1) |
j2 | |
a | |
\sigma'(j2) |
\right]\\ &
=\sum | |
\sigma\inSn,\sigma(j1)<\sigma(j2) |
i | |
\left[sgn(\sigma)\left(\prod | |
\sigma(i) |
j1 | |
\right)a | |
\sigma(j1) |
j2 | |
a | |
\sigma(j2) |
i | |
-sgn(\sigma)\left(\prod | |
\sigma(i) |
j1 | |
\right)a | |
\sigma(j2) |
j2 | |
a | |
\sigma(j1) |
\right]\\ &
=\sum | |
\sigma\inSn,\sigma(j1)<\sigma(j2) |
i | |
sgn(\sigma)\left(\prod | |
\sigma(i) |
j1 | |
\right)\underbrace{\left(a | |
\sigma(j1) |
j2 | |
a | |
\sigma(j2) |
j2 | |
-a | |
\sigma(j1) |
| |||||
a | |||||
\sigma(j2) |
\right)} | |||||||||||
|
\\ \\ \end{align}
j1 | |
A |
=
j2 | |
A |
F(...,
j1 | |
A |
,...,
j2 | |
A |
,...)=0
Finally,
F(I)=1
\begin{align} F(I)&=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\prod | |
i=1 |
i | |
I | |
\sigma(i) |
=
\sum | |
\sigma\inSn |
sgn(\sigma)
n | |
\prod | |
i=1 |
\operatorname{\delta}i,\sigma(i)\\ &=
\sum | |
\sigma\inSn |
sgn(\sigma)\operatorname{\delta}\sigma,\operatorname{id\{1\ldots
Thus the only alternating multilinear functions with
F(I)=1
\det:Mn(K) → K