Legendre transform (integral transform) explained

Pn(x)

as kernels of the transform. Legendre transform is a special case of Jacobi transform.

The Legendre transform of a function

f(x)

is[1] [2] [3]

l{J}n\{f(x)\}=\tildef(n)=

1
\int
-1

Pn(x)f(x)dx

The inverse Legendre transform is given by

-1
l{J}
n

\{\tildef(n)\}=f(x)=

infty
\sum
n=0
2n+1
2

\tildef(n)Pn(x)

Associated Legendre transform

Associated Legendre transform is defined as

l{J}n,m\{f(x)\}=\tildef(n,m)=

1
\int
-1

(1-x2)-m/2

m(x)
P
n

f(x)dx

The inverse Legendre transform is given by

-1
l{J}
n,m

\{\tildef(n,m)\}=f(x)=

infty
\sum
n=0
2n+1
2
(n-m)!
(n+m)!

\tildef(n,m)(1-x2)m/2

m(x)
P
n

Some Legendre transform pairs

f(x)

\tildef(n)

xn

2n+1(n!)2
(2n+1)!

eax

\sqrt{2\pi
a
}I_(a)

eiax

\sqrt{2\pi
a
}i^n J_(a)

xf(x)

1
2n+1

[(n+1)\tildef(n+1)+n\tildef(n-1)]

(1-x2)-1/2

\pi

2(0)
P
n

[2(a-x)]-1

Qn(a)

(1-2ax+a2)-1/2,

a<1 \,

2an(2n+1)-1

(1-2ax+a2)-3/2,

a<1 \,

2an(1-a2)-1

a
\int
0
tb-1dt
(1-2xt+t2)1/2

,

a<1 \ b>0 \,
2an+b
(2n+1)(n+b)
d
dx
2)d
dx
\left[(1-x

\right]f(x)

-n(n+1)\tildef(n)

\left\{d
dx
2)d
dx
\left[(1-x

\right]\right\}kf(x)

(-1)knk(n+1)k\tildef(n)

f(x)-
4
d
dx
2)d
dx
\left[(1-x

\right]f(x)

\left(n+1
2

\right)2\tildef(n)

ln(1-x)

\begin{cases} 2(ln2-1),&n=0\\ -

2
n(n+1)

,&n>0\end{cases}

f(x)*g(x)

\tildef(n)\tildeg(n)

x
\int
-1

f(t)dt

\begin{cases} \tildef(0)-\tildef(1),&n=0\\

\tildef(n-1)-\tildef(n+1)
2n+1

,&n>1 \end{cases}

d
dx

g(x),g(x)=

x
\int
-1

f(t)dt

g(1)-

1g(x)
\int
-1
d
dx

Pn(x)dx

Notes and References

  1. Book: Debnath . Lokenath . Dambaru Bhatta. Integral transforms and their applications. . 2007 . Chapman & Hall/CRC . Boca Raton . 9781482223576 . 2nd.
  2. Churchill . R. V. . The Operational Calculus of Legendre Transforms . Journal of Mathematics and Physics . 1954 . 33 . 1-4 . 165–178 . 10.1002/sapm1954331165. 2027.42/113680 . free .
  3. Churchill, R. V., and C. L. Dolph. "Inverse transforms of products of Legendre transforms." Proceedings of the American Mathematical Society 5.1 (1954): 93–100.