Legendre rational functions explained
In mathematics, the Legendre rational functions are a sequence of orthogonal functions on . They are obtained by composing the Cayley transform with Legendre polynomials.
A rational Legendre function of degree n is defined as:where
is a Legendre polynomial. These functions are
eigenfunctions of the singular
Sturm–Liouville problem:
with eigenvalues
Properties
Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves.
Recursion
and
Limiting behavior
It can be shown thatand
Orthogonality
where
is the
Kronecker delta function.
Particular values
References
- Zhong-Qing . Wang . Ben-Yu, Guo . 2005 . A mixed spectral method for incompressible viscous fluid flow in an infinite strip . Computational & Applied Mathematics . Sociedade Brasileira de Matemática Aplicada e Computacional . 24 . 3 . 10.1590/S0101-82052005000300002 . free .