Legendre rational functions explained

In mathematics, the Legendre rational functions are a sequence of orthogonal functions on . They are obtained by composing the Cayley transform with Legendre polynomials.

A rational Legendre function of degree n is defined as:R_n(x) = \frac\,P_n\left(\frac\right)where

Pn(x)

is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm–Liouville problem:(x+1) \frac\left(x \frac \left[\left(x+1\right) v(x)\right]\right) + \lambda v(x) = 0with eigenvalues\lambda_n=n(n+1)\,

Properties

Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves.

Recursion

R_(x)=\frac\,\frac\,R_n(x)-\frac\,R_(x)\quad\mathrmand2 (2n+1) R_n(x) = \left(x+1\right)^2 \left(\frac R_(x) - \frac R_(x)\right) + (x+1) \left(R_(x) - R_(x)\right)

Limiting behavior

It can be shown that\lim_(x+1)R_n(x)=\sqrtand\lim_x\partial_x((x+1)R_n(x))=0

Orthogonality

\int_^\infty R_m(x)\,R_n(x)\,dx=\frac\delta_where

\deltanm

is the Kronecker delta function.

Particular values

\beginR_0(x) &= \frac\,1 \\R_1(x) &= \frac\,\frac \\R_2(x) &= \frac\,\frac \\R_3(x) &= \frac\,\frac \\R_4(x) &= \frac\,\frac\end

References