Le Cam's theorem explained

In probability theory, Le Cam's theorem, named after Lucien Le Cam, states the following.

Suppose:

X1,X2,X3,\ldots

are independent random variables, each with a Bernoulli distribution (i.e., equal to either 0 or 1), not necessarily identically distributed.

\Pr(Xi=1)=pi,fori=1,2,3,\ldots.

λn=p1++pn.

Sn=X1++Xn.

(i.e.

Sn

follows a Poisson binomial distribution)

Then

infty
\sum
k=0

\left|\Pr(Sn=k)-

k
{λ
n
n
e

\overk!}\right|<2\left(

n
\sum
i=1
2
p
i

\right).

In other words, the sum has approximately a Poisson distribution and the above inequality bounds the approximation error in terms of the total variation distance.

By setting pi = λn/n, we see that this generalizes the usual Poisson limit theorem.

When

λn

is large a better bound is possible:
infty
\sum
k=0

\left|\Pr(Sn=k)-

k
{λ
n
n
e

\overk!}\right|<2\left(1\wedge

1
λ

n\right)\left(

n
\sum
i=1
2
p
i

\right)

, where

\wedge

represents the

min

operator.

It is also possible to weaken the independence requirement.

References

[1] [2] [3] [4]

Notes and References

  1. Book: den Hollander . Frank . Probability Theory: the Coupling Method.
  2. Le Cam . L. . Lucien le Cam . An Approximation Theorem for the Poisson Binomial Distribution . Pacific Journal of Mathematics . 10 . 4 . 1181 - 1197 . 1960 . 2009-05-13 . 0142174 . 0118.33601 . 10.2140/pjm.1960.10.1181. free .
  3. Le Cam . L. . Lucien le Cam . On the Distribution of Sums of Independent Random Variables . Bernoulli, Bayes, Laplace: Proceedings of an International Research Seminar . Jerzy Neyman . Jerzy Neyman . Lucien le Cam . Springer-Verlag . New York . 179 - 202 . 1963 . 0199871.
  4. Steele . J. M.. Le Cam's Inequality and Poisson Approximations . 2325124 . The American Mathematical Monthly . 101 . 1 . 48–54 . 1994 . 10.2307/2325124.