In probability theory, the law of total covariance,[1] covariance decomposition formula, or conditional covariance formula states that if X, Y, and Z are random variables on the same probability space, and the covariance of X and Y is finite, then
\operatorname{cov}(X,Y)=\operatorname{E}(\operatorname{cov}(X,Y\midZ))+\operatorname{cov}(\operatorname{E}(X\midZ),\operatorname{E}(Y\midZ)).
The nomenclature in this article's title parallels the phrase law of total variance. Some writers on probability call this the "conditional covariance formula"[2] or use other names.
Note: The conditional expected values E(X | Z) and E(Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z. If we write E(X | Z = z) = g(z) then the random variable E(X | Z) is g(Z). Similar comments apply to the conditional covariance.
The law of total covariance can be proved using the law of total expectation: First,
\operatorname{cov}(X,Y)=\operatorname{E}[XY]-\operatorname{E}[X]\operatorname{E}[Y]
from a simple standard identity on covariances. Then we apply the law of total expectation by conditioning on the random variable Z:
=\operatorname{E}[\operatorname{E}[XY\midZ]]-\operatorname{E}[\operatorname{E}[X\midZ]]\operatorname{E}[\operatorname{E}[Y\midZ]]
Now we rewrite the term inside the first expectation using the definition of covariance:
=\operatorname{E}[\operatorname{cov}(X,Y\midZ)+\operatorname{E}[X\midZ]\operatorname{E}[Y\midZ]]-\operatorname{E}[\operatorname{E}[X\midZ]]\operatorname{E}[\operatorname{E}[Y\midZ]]
Since expectation of a sum is the sum of expectations, we can regroup the terms:
=\operatorname{E}[\operatorname{cov}(X,Y\midZ)]+\operatorname{E}[\operatorname{E}[X\midZ]\operatorname{E}[Y\midZ]]-\operatorname{E}[\operatorname{E}[X\midZ]]\operatorname{E}[\operatorname{E}[Y\midZ]]
Finally, we recognize the final two terms as the covariance of the conditional expectations E[''X'' | ''Z''] and E[''Y'' | ''Z'']:
=\operatorname{E}[\operatorname{cov}(X,Y\midZ)]+\operatorname{cov}(\operatorname{E}[X\midZ],\operatorname{E}[Y\midZ])