In mathematics, specifically in order theory and functional analysis, two elements x and y of a vector lattice X are lattice disjoint or simply disjoint if
inf\left\{|x|,|y|\right\}=0
x\perpy
|x|:=\sup\left\{x,-x\right\}
A\perpB
\{a\}
a\perpB
\{a\}\perpB
A\perp:=\left\{x\inX:x\perpA\right\}
Two elements x and y are disjoint if and only if
\sup\{|x|,|y|\}=|x|+|y|
|x+y|=|x|+|y|
\left(x+y\right)+=x++y+
z+:=\sup\left\{z,0\right\}
z-:=\sup\left\{-z,0\right\}
Disjoint complements are always bands, but the converse is not true in general. If A is a subset of X such that
x=\supA
\{x\}
For any x in X, let
x+:=\sup\left\{x,0\right\}
x-:=\sup\left\{-x,0\right\}
\geq0
x=x+-x-
|x|=x++x-
x+
x-
x=x+-x-
\geq0
\left|x+-y+\right|\leq|x-y|
x+y=\sup\{x,y\}+inf\{x,y\}
x\leqy
x+\leqy+
x-\leqx-1
. Schaefer . Helmut H. . Helmut H. Schaefer . Wolff . Manfred P. . Topological Vector Spaces . Springer New York Imprint Springer . . 3 . New York, NY . 1999 . 978-1-4612-7155-0 . 840278135 .