Latissimus dorsi muscle explained

Latissimus dorsi
Latin:musculus latissimus dorsi
Origin:Spinous processes of vertebrae T7-L5, thoracolumbar fascia, iliac crest, inferior 3 or 4 ribs and inferior angle of scapula
Insertion:Floor of intertubercular groove of the humerus
Blood:Thoracodorsal branch of the subscapular artery
Nerve:Thoracodorsal nerve (C6, C7, C8)
Action:Adducts, extends and internally rotates the arm when the insertion is moved towards the origin. When observing the muscle action of the origin towards the insertion, the lats are a very powerful rotator of the trunk.
Antagonist:Deltoid and trapezius muscle

The latissimus dorsi is a large, flat muscle on the back that stretches to the sides, behind the arm, and is partly covered by the trapezius on the back near the midline. The word latissimus dorsi (plural: latissimi dorsi) comes from Latin and means "broadest [muscle] of the back", from "latissimus" (Latin: broadest) and "dorsum" (Latin: back). The pair of muscles are commonly known as "lats", especially among bodybuilders.

The latissimus dorsi is responsible for extension, adduction, transverse extension also known as horizontal abduction (or horizontal extension),[1] flexion from an extended position, and (medial) internal rotation of the shoulder joint. It also has a synergistic role in extension and lateral flexion of the lumbar spine.

Due to bypassing the scapulothoracic joints and attaching directly to the spine, the actions the latissimi dorsi have on moving the arms can also influence the movement of the scapulae, such as their downward rotation during a pull up.

Structure

Variations

The number of dorsal vertebrae, to which it is attached, varies from four to eight; the number of costal attachments varies; muscle fibers may or may not reach the crest of the ilium.

A muscle slip, the axillary arch, varying from 7 to 10 cm in length, and from 5 to 15 mm in breadth, occasionally springs from the upper edge of the latissimus dorsi about the middle of the posterior fold of the axilla, and crosses the axilla in front of the axillary vessels and nerves, to join the under surface of the tendon of the pectoralis major, the coracobrachialis, or the fascia over the biceps brachii. This axillary arch crosses the axillary artery, just above the spot usually selected for the application of a ligature, and may mislead a surgeon. It is present in about 7% of the population and may be easily recognized by the transverse direction of its fibers. Guy et al. extensively described this muscular variant using MRI data and positively correlated its presence with symptoms of neurological impingement.[2]

A fibrous slip usually passes from the upper border of the tendon of the Latissimus dorsi, near its insertion, to the long head of the triceps brachii. This is occasionally muscular, and is the representative of the dorsoepitrochlearis brachii of apes.[3] [4] This muscular form is found in ~5% of humans and is sometimes termed the latissimocondyloideus.[5]

The latissimus dorsi crosses the inferior angle of the scapula. A study found that, of 100 cadavers dissected:[6]

Triangles

Nerve supply

The latissimus dorsi is innervated by the sixth, seventh, and eighth cervical nerves through the thoracodorsal (long subscapular) nerve. Electromyography suggests that it consists of six groups of muscle fibres that can be independently coordinated by the central nervous system.[7]

Function

The latissimus dorsi assists in depression of the arm with the teres major and pectoralis major. It adducts, extends, and internally rotates the shoulder. When the arms are in a fixed overhead position, the latissimus dorsi pulls the trunk upward and forward.[8]

It has a synergistic role in extension (posterior fibers) and lateral flexion (anterior fibers) of the lumbar spine, and assists as a muscle of both forced expiration (anterior fibers) and an accessory muscle of inspiration (posterior fibers).[9]

Most latissimus dorsi exercises concurrently recruit the teres major, posterior fibres of the deltoid, long head of the triceps brachii, among numerous other stabilizing muscles. Compound exercises for the 'lats' typically involve elbow flexion and tend to recruit the biceps brachii, brachialis, and brachioradialis for this function. Depending on the line of pull, the trapezius muscles can be recruited as well; horizontal pulling motions such as rows recruit both latissimus dorsi and trapezius heavily.

Training

The power/size/strength of this muscle can be trained with a variety of different exercises. Some of these include:

Clinical significance

Tight latissimus dorsi has been shown to be a contributor to chronic shoulder pain and chronic back pain.[10] Because the latissimus dorsi connects the spine to the humerus, tightness in this muscle can manifest as either sub-optimal glenohumeral joint (shoulder) function which leads to chronic pain or tendinitis in the tendinous fasciae connecting the latissimus dorsi to the thoracic and lumbar spine.[11]

The latissimus dorsi is a potential source of muscle for breast reconstruction surgery after mastectomy (e.g., Mannu flap) [12] or to correct pectoral hypoplastic defects such as Poland's syndrome.[13] [14] An absent or hypoplastic latissimus dorsi can be one of the associated symptoms of Poland's syndrome.[15] [16]

Cardiac support

For heart patients with low cardiac output and who are not candidates for cardiac transplantation, a procedure called cardiomyoplasty may support the failing heart. This procedure involves wrapping the latissimus dorsi muscles around the heart and electrostimulating them in synchrony with ventricular systole.

Injury

Injuries to the latissimus dorsi are rare. They occur disproportionately in baseball pitchers. Diagnosis can be achieved by visualization of the muscle and movement testing. MRI of the shoulder girdle will confirm the diagnosis. Muscle belly injuries are treated with rehabilitation while tendon avulsion injuries can be treated surgically, or with rehab. Regardless of treatment, patients tend to return to play without any functional losses.[17]

See also

External links

Notes and References

  1. Kinematic Concepts for Analyzing Human Motion. In: Hall SJ. eds. Basic Biomechanics, 7e. McGraw-Hill; Accessed January 25, 2021. https://accessphysiotherapy-mhmedical-com.libaccess.lib.mcmaster.ca/content.aspx?bookid=1586&sectionid=99981270
  2. Guy . MS . Sandhu . SK . Gowdy . JM . Cartier . CC . Adams . JH . Jan 2011 . MRI of the axillary arch muscle: prevalence, anatomic relations, and potential consequences . AJR Am J Roentgenol . 196 . 1. W52–7 . 10.2214/ajr.10.4380 . 21178031 .
  3. Haninec . P . Tomás . R . Kaiser . R . Cihák . R . 2009 . Development and clinical significance of the musculus dorsoepitrochlearis in men . Clin. Anat. . 22 . 4. 481–8 . 19373904 . 10.1002/ca.20799 . 221547558 .
  4. Edwards, William E., The Musculoskeletal Anatomy of the Thorax and Brachium of an Adult Female Chimpanzee,6571st Aeromedical Research Laboratory, New Mexico, 1965. https://web.archive.org/web/20200808175618/https://apps.dtic.mil/dtic/tr/fulltext/u2/462433.pdf
  5. Web site: Anatomy Atlases: Illustrated Encyclopedia of Human Anatomic Variation: Opus I: Muscular System: Alphabetical Listing of Muscles: L:Latissimus Dorsi. www.anatomyatlases.org.
  6. Book: Giacomo. Giovanni Di. Pouliart. Nicole. Costantini. Alberto. Vita. Andrea de. Atlas of Functional Shoulder Anatomy. Springer Science & Business Media. en. 25 September 2008. 9788847007598.
  7. Brown . JM . Wickham . JB . McAndrew . DJ . Huang . XF . 2007 . Muscles within muscles: Coordination of 19 muscle segments within three shoulder muscles during isometric motor tasks . J Electromyogr Kinesiol . 17 . 1. 57–73 . 10.1016/j.jelekin.2005.10.007 . 16458022 .
  8. George. Michael S.. Khazzam. Michael. February 2019. Latissimus Dorsi Tendon Rupture. Journal of the American Academy of Orthopaedic Surgeons. en. 27. 4. 113–118. 10.5435/JAAOS-D-17-00581. 30278013. 52910621. 1067-151X.
  9. Book: Muscles Testing and Function With Posture and Pain. 2005. 238. 9780781747806. Kendall. Florence Peterson. McCreary. Elizabeth Kendall. Provance. Patricia Geise.
  10. Arnheim, D.D., Prentice, W.E., Principles of athletic training. 9th ed. McGraw Hill, pp 570-574, 1997.
  11. Francis, P., Applied anatomy and kinesiology, supplemental materials. KB Books., p 19-25, 1999.
  12. Mannu, G. S., Farooq, N., Down, S., Burger, A. and Hussien, M. I. (2013), Avoiding back wound dehiscence in extended latissimus dorsi flap reconstruction. ANZ J Surg, 83: 359–364. http://onlinelibrary.wiley.com/doi/10.1111/j.1445-2197.2012.06292.x/full
  13. Yang CE, Roh TS, Yun IS, Kim YS, Lew DH . Immediate partial breast reconstruction with endoscopic latissimus dorsi muscle flap harvest . Arch Plast Surg . 41 . 5 . 513–9 . 2014 . 25276643 . 4179355 . 10.5999/aps.2014.41.5.513.
  14. Lantzsch T, Lampe D, Kantelhardt EJ . Correction of Poland's Syndrome: Case Report and Review of the Current Literature . Breast Care (Basel) . 8 . 2 . 139–42 . 2013 . 24419214 . 3683949 . 10.1159/000350778.
  15. Masia J, Pons G, Loschi P, Sanchez Porro-Gil L, Nardulli ML, Olivares L . Autologous reconstruction of a complex form of Poland syndrome using 2 abdominal perforator free flaps . Ann Plast Surg . 74 . 5 . 580–3 . 2015 . 24322640 . 10.1097/SAP.0b013e31829a39b1.
  16. Beer GM, Kompatscher P, Hergan K . Poland's syndrome and vascular malformations . Br J Plast Surg . 49 . 7 . 482–4 . 1996 . 8983554. 10.1016/S0007-1226(96)90037-5 . free .
  17. Donohue . Benjamin . Lubitz . Marc . December 20, 2016. Sports Injuries to the Latissimus Dorsi and Teres Major . The American Journal of Sports Medicine . 45 . 10 . 2428–2435 . 10.1177/0363546516676062 . 28125914 . 3872258 .