Ambient ionization explained
Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation.[1] [2] [3] [4] Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer.[5]
Solid-liquid extraction
Solid-liquid extraction based ambient ionization is based on the use of a charged spray, for example electrospray to create a liquid film on the sample surface.[6] Molecules on the surface are extracted into the solvent. The action of the primary droplets hitting the surface produces secondary droplets that are the source of ions for the mass spectrometer.
Desorption electrospray ionization (DESI) is one of the original ambient ionization sources[7] and uses an electrospray source to create charged droplets that are directed at a solid sample. The charged droplets pick up the sample through interaction with the surface and then form highly charged ions that can be sampled into a mass spectrometer.[8]
Desorption atmospheric pressure photoionization (DAPPI) is a solid-liquid extraction ambient ionization method that enables the direct analysis of samples deposited on surfaces by means of a jet of hot solvent vapour and ultraviolet light. The hot jet thermally desorbs the sample from a surface and the vaporized sample is ionized by a vacuum ultraviolet light and consequently sampled into a mass spectrometer.[9]
Plasma-based techniques
Plasma-based ambient ionization is based on an electrical discharge in a flowing gas that produces metastable atoms and molecules and reactive ions. Heat is often used to assist in the desorption of volatile species from the sample. Ions are formed by chemical ionization in the gas phase.
One proposed mechanism involves Penning ionization of ambient water clusters in a helium discharge:
He^\ast + [(H2O)_\mathit{n}H] -> [(H2O)_{\mathit n-1}H]+ + OH^. + e^- .
The protonated water clusters can then protonate the sample molecules via
[(H2O)_\mathit{n}H]+ + M -> [M{} + H]+ + \mathitH2O.
For this ionization pathway, the gas-phase acidity of the protonated water clusters and the gas-phase basicity of the analyte molecule are of crucial importance. However, since especially smaller protonated water clusters with n = 1,2,3... exhibit very high gas-phase acidities, even compounds with a rather low gas-phase basicity are readily ionized by proton transfer, yielding [M+H]+ quasimolecular ions.[10] [11]
Besides protonated water clusters, other positively charged reagent ions, such as NO+, O2+, NO2+ and CO2+, may be formed in the afterglow region.[12] These additional reagent ions are capable of ionizing compounds via charge-transfer processes and, thus, offer alternative routes of ionization besides proton transfer, leading to a broader range of suitable analytes. Nevertheless, these ionization mechanisms may also lead to the formation of adducts and oxidation of the original analyte compounds.
Although most applications focus on the detection of positive ions, measurements in the negative mode are for most of the plasma-based ion sources also possible. In this case, reagent ions, such as O2–, can deprotonate the analyte molecules to give [M–H]– quasimolecular ions, or form adducts with species such as NO3–, yielding [M+NO<sub>3</sub>]– ions. Measurements in the negative ion mode are especially favorable when the analyte molecules exhibit a high gas-phase acidity, as it is the case e.g. for carboxylic acids.
One of the most used plasma-based techniques for ambient ionization is probably Direct analysis in real time (DART), since it is commercially available. DART is an atmospheric pressure ion source that operates by exposing the sample to a gas stream (typically helium or nitrogen) that contains long-lived electronically or excited neutral atoms, vibronically excited molecules (or "metastables"). Excited states are formed in a glow discharge in a chamber through which the gas flows.[13]
Laser assisted
Laser-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with an electrospray or plasma to create ions. Lasers with ultraviolet and infrared wavelengths and nanosecond to femtosecond pulse widths have been used. Although atmospheric pressure MALDI is performed under ambient conditions,[14] it is not generally considered to be an ambient mass spectrometry technique.[15] [16]
Laser ablation was first coupled with mass spectrometry in the 1980s for the analysis of metals using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).[17] The laser ablates the sample material that is introduced into an ICP to create atomic ions.
Infrared laser desorption can be coupled with atmospheric pressure chemical ionization using laser desorption atmospheric pressure chemical ionization (LD-APCI).[18] For ambient ionization with a spray, the sample material is deposited on a target near the spray. The laser desorbs or ablates material from the sample that is ejected from the surface and into the spray, which can be an APCI spray with a corona discharge or an electrospray. Ambient ionization by electrospray-assisted laser desorption/ionization (ELDI) can be accomplished with ultraviolet[19] and infrared lasers[20] to the desorb material into the electrospray plume. Similar approaches to laser desorption/ablation into an electrospray are matrix-assisted laser desorption electrospray ionization (MALDESI),[21] laser ablation electrospray ionization (LAESI),[22] laser assisted desorption electrospray ionization (LADESI), laser desorption electrospray ionization (LDESI),[23] [24] laser ablation mass spectrometry (LAMS),[25] and laser desorption spray post-ionization (LDSPI).[26] The term laser electrospray mass spectrometry has been used to denote the use of a femtosecond laser for ablation.[27] [28] Laser ablation into an electrospray produces highly charged ions that are similar to those observed in direct electrospray.
An alternative ionization approach following laser desorption is a plasma. UV laser ablation can be combined with a flowing afterglow plasma for mass spectrometry imaging of small molecules. and IR desorption has been combined with a metastable ion source.
Two step non-laser
In two-step non-laser methods, the material removal from the sample and the ionization steps are separate.
Probe electrospray ionization (PESI) is a modified version of conventional electrospray ionization in which the capillary for sample solution transferring is replaced by a solid needle with a sharp tip.[29] Compared with conventional electrospray ionization, high salt tolerance, direct sampling, and low sample consumption are found with PESI. PESI is not a continuous process; the needle for sampling and spraying is driven up and down at a frequency of 3–5 Hz.
Vapor-ion, charge transfer reaction
The analytes are in the vapor phase. This includes breath, odors, VOCs, and other molecules with low volatility that, due to the constant improvements in sensitivity, are detectable in the vapor phase despite their low vapor pressure. Analyte ions are produced via gas-phase chemical reactions, where charging agents collide with the analyte molecules and transfer their charge. In secondary electro-spray ionization (SESI), a nano-electrospray operated at high temperature produces nanodroplets that evaporate very rapidly to produce ions and protonated water clusters that ionize the vapors of interest. SESI is commonly used for the analysis of trace concentrations of vapors being able to detect low volatility species in the gas phase with molecular masses of up to 700 Da.
Table of techniques
In the table below, ambient ionization techniques are classified in the categories "extraction" (a solid or liquid extraction processes dynamically followed by spray or chemical ionization), "plasma" (thermal or chemical desorption with chemical ionization), "two step" (desorption or ablation followed by ionization), "laser" (laser desorption or ablation followed by ionization), "acoustic" (acoustic desorption followed by ionization), multimode (involving two of the above modes), other (techniques that do not fit into the other categories).
Acronym | Technique | Classification |
---|
AFAI[30] | Air flow-assisted ionization | Extraction |
AFADESI[31] | Air flow-assisted desorption electrospray ionization | Extraction |
APGDDI[32] | Atmospheric pressure glow discharge desorption ionization | Plasma |
APPIS[33] | Ambient pressure pyroelectric ion source | |
APTDCI[34] | Atmospheric pressure thermal desorption chemical ionization | Two-step |
APTDI[35] | Atmospheric pressure thermal desorption/ionization | Plasma |
ASAP[36] | Atmospheric pressure solids analysis probe | Plasma |
BADCI[37] | Beta electron-assisted direct chemical ionization | Two step |
CALDI[38] | Charge assisted laser desorption/ionization | Laser |
DAPCI[39] | Desorption atmospheric pressure chemical ionization | Plasma |
DAPPI[40] | Desorption atmospheric pressure photoionization | Extraction |
DART[41] | Direct analysis in real time | Plasma |
DBDI[42] | Dielectric barrier discharge ionization | Plasma |
DCBI | Desorption corona beam ionization | Plasma |
DCI | Desorption chemical ionization | Plasma |
DEFFI[43] | Desorption electro-flow focusing ionization | Extraction |
DEMI[44] | Desorption electrospray/metastable-induced ionization | Multimode |
DESI | Desorption electrospray ionization | Extraction |
DeSSI[45] | Desorption sonic spray ionization | Extraction |
DICE[46] | Desorption ionization by charge exchange | Extraction |
DIP-APCI[47] | Direct inlet probe–atmospheric-pressure chemical ionization | Two-step |
DPESI[48] | Direct probe electrospray ionization | |
EADESI[49] | Electrode-assisted desorption electrospray ionization | Extraction |
EASI[50] | Easy ambient sonic-spray ionization | Extraction |
EESI[51] | Extractive electrospray ionization | Two step |
ELDI[52] | Electrospray laser desorption ionization | Laser |
ESA-Py[53] | Electrospray-assisted pyrolysis ionization | Spray |
ESTASI[54] | Electrostatic spray ionization | Extraction |
FAPA[55] | Flowing atmospheric pressure afterglow | Plasma |
FIDI[56] | Field-induced droplet ionization | |
HALDI[57] | High-voltage-assisted laser desorption ionization | Laser |
HAPGDI | Helium atmospheric pressure glow discharge ionization | Plasma |
IR-LAMICI[58] | Infrared laser ablation metastable-induced chemical ionization | Laser |
JeDI[59] | Jet desorption electrospray ionization | Extraction |
LADESI[60] | Laser assisted desorption electrospray ionization | Laser |
LAESI[61] | Laser ablation electrospray ionization | Laser |
LA-FAPA[62] | Laser ablation flowing atmospheric pressure afterglow | Laser |
LA-ICP[63] | Laser ablation inductively coupled plasma | Laser |
LD-APCI | Laser desorption atmospheric pressure chemical ionization | Laser |
LDTD[64] | Laser diode thermal desorption | Laser |
LDESI | Laser desorption electrospray ionization | Laser |
LDSPI | Laser desorption spray post-ionization | Laser |
LEMS | Laser electrospray mass spectrometry | Laser |
LESA[65] | Liquid extraction surface analysis | Extraction |
LIAD-ESI[66] | Laser-induced acoustic desorption-electrospray ionization | Acoustic |
LMJ-SSP[67] | Liquid microjunction-surface sampling probe | Extraction |
LPTD[68] | Leidenfrost phenomenon-assisted thermal desorption | Two-step |
LS-APGD[69] | Liquid sampling-atmospheric pressure glow discharge | Plasma |
LSI[70] | Laser spray ionization | Other |
LTP[71] | Low temperature plasma | Plasma |
MAII[72] | Matrix-assisted inlet ionization | Other |
MALDESI[73] | Matrix-assisted laser desorption electrospray ionization | Laser |
MFGDP[74] | Microfabricated glow discharge plasma | Plasma |
MIPDI[75] | microwave induced plasma desorption ionization | Plasma |
nano-DESI[76] | Nanospray desorption electrospray ionization | Extraction |
ND-EESI[77] | Neutral desorption extractive electrospray ionization | Two step |
PADI[78] | Plasma-assisted desorption ionization | Plasma |
Paint Spray*[79] | Paint spray | Extraction |
PALDI[80] | Plasma-assisted laser desorption ionization | Laser |
PAMLDI[81] | Plasma-assisted multiwavelength laser desorption ionization | Laser |
PASIT[82] | Plasma-based ambient sampling/ionization/transmission | Extraction |
PAUSI[83] | Paper assisted ultrasonic spray ionization | |
PESI[84] | Probe electrospray ionization | Two step |
PS[85] | Paper spray | |
PTC-ESI[86] | Pipette tip column electrospray ionization | Extraction |
RADIO[87] | Radiofrequency acoustic desorption and ionization | Acoustic |
RASTIR[88] | Remote analyte sampling transport and ionization relay | |
REIMS[89] | Rapid evaporative ionization mass spectrometry | Other |
RoPPI[90] | Robotic plasma probe ionization | Two-step |
SACI[91] | Surface activated chemical ionization | |
SAII[92] | Solvent-assisted inlet ionization | Other |
SAWN[93] | Surface acoustic wave nebulization | Acoustic |
SESI[94] | Secondary electrospray ionization | Vapor-ion, charge transfer |
SPA-nanoESI[95] | Solid probe assisted nanoelectrospray ionization | Two-step |
SPAMS[96] | Single-particle aerosol mass spectrometry | Other |
SSI[97] | Sponge-Spray Ionization | |
SSP[98] | Surface sampling probe | Extraction |
SwiFerr[99] | Switched ferroelectric plasma ionizer | Other |
TDAMS[100] | Thermal desorption-based ambient mass spectrometry | Spray |
TM-DESI[101] | Transmission mode desorption electrospray ionization | Extraction |
TS[102] | Touch spray | Two-step |
UASI[103] | Ultrasonication-assisted spray ionization | Acoustic |
V-EASI[104] | Venturi easy ambient sonic-spray ionization | Extraction |
BS [105] | Brush-Spray Ionization | Two-step |
FS [106] | Fiber-Spray Ionization | Extraction | |
(*) Not an acronym.
Table of commercially available ambient ionization sources
!Technique!Commercial Brand!Company !WebsiteAmbient Pressure Photo Ionization (APPI) | MasCom GC-(APPI)
| MasCom Technologies GmbH | https://www.mascom-bremen.de/ | |
Atmospheric pressure solids analysis probe (ASAP) | RADIAN | Waters, USA | https://www.waters.com/ | |
Desorption Electrospray Ionization (DESI) | DESI2D | Prosolia Inc, Indianapolis, IN | https://prosolia.com/ | |
Direct Analysis in Real Time (DART) | DART | IonSense Inc, Saugus, MA | https://www.ionsense.com/ | |
Liquid Extraction Surface Analysis (LESA) | TriVersaNanoMate | Advion, Ithaca, NY | https://advion.com/ | |
Probe Electrospray Ionization (PESI) | DPiMS-8060 | Shimadzu, Japan | https://www.shimadzu.com/ | |
Rapid evaporative Ionization Mass Spectrometry (REIMS) | REIMS | Waters, USA | https://www.waters.com/ | |
Secondary Electrospray Ionization (SESI) | SUPER SESI | Fossil Ion Technology, Spain | https://www.fossiliontech.com/ | |
Soft Ionization by Chemical Reaction In Transfer (SICRIT) | SICRIT | Plasmion GmbH, Germany | https://plasmion.com/ | | |
Notes and References
- Book: Domin. Marek. Cody. Robert. Ambient Ionization Mass Spectrometry. 2014. RSC (Royal Society of Chemistry). 978-1-84973-926-9. 10.1039/9781782628026.
- Cooks . R. Graham . Ouyang . Zheng . Takats . Zoltan . Wiseman . Justin M. . 2006 . Ambient Mass Spectrometry . Science . 311 . 5767 . 1566–70 . 10.1126/science.1119426 . 16543450 . 2006Sci...311.1566C. 22007354 .
- Monge. María Eugenia. Harris. Glenn A.. Dwivedi. Prabha. Fernández. Facundo M.. Mass Spectrometry: Recent Advances in Direct Open Air Surface Sampling/Ionization. Chemical Reviews. 113. 4. 2013. 2269–2308. 0009-2665. 10.1021/cr300309q. 23301684.
- Huang. Min-Zong. Yuan. Cheng-Hui. Cheng. Sy-Chyi. Cho. Yi-Tzu. Shiea. Jentaie. Ambient Ionization Mass Spectrometry. Annual Review of Analytical Chemistry. 3. 1. 2010. 43–65. 1936-1327. 10.1146/annurev.anchem.111808.073702. 20636033. 2010ARAC....3...43H.
- Paine. Martin R. L.. Barker. Philip J.. Blanksby. Stephen J.. Ambient ionisation mass spectrometry for the characterisation of polymers and polymer additives: a review. Analytica Chimica Acta. 15 January 2014. 808. 70–82. 10.1016/j.aca.2013.10.001. 24370094. 2014AcAC..808...70P .
- Badu-Tawiah. Abraham K.. Eberlin. Livia S.. Ouyang. Zheng. Cooks. R. Graham. Chemical Aspects of the Extractive Methods of Ambient Ionization Mass Spectrometry. Annual Review of Physical Chemistry. 64. 1. 2013. 481–505. 0066-426X. 10.1146/annurev-physchem-040412-110026. 23331308. 2013ARPC...64..481B .
- Takats. Z.. Wiseman. J. M.. Gologan. B. Cooks. R. G.. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science. 306. 5695. 2004. 471–473. 0036-8075. 10.1126/science.1104404. 15486296. 2004Sci...306..471T . 22994482 .
- Takáts Z, Wiseman JM, Cooks RG . Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology . Journal of Mass Spectrometry . 40 . 10 . 1261–75 . 2005 . 16237663 . 10.1002/jms.922 . 2005JMSp...40.1261T . free .
- Haapala M, Pól J, Saarela V, Arvola V, Kotiaho T, Ketola RA, Franssila S, Kauppila TJ, Kostiainen R . Desorption Atmospheric Pressure Photoionization . Anal. Chem. . 79 . 20 . 7867–7872 . 2007 . 10.1021/ac071152g . 17803282 .
- Characterization of Direct-Current Atmospheric-Pressure Discharges Useful for Ambient Desorption/Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry. 2009-05-01. 837–844. 20. 5. 10.1016/j.jasms.2008.12.020. 19185515. Jacob T.. Shelley. Joshua S.. Wiley. George C. Y.. Chan. Gregory D.. Schilling. Steven J.. Ray. Gary M.. Hieftje. free.
- Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA–MS. Journal of Mass Spectrometry. 2016-02-01. 1096-9888. 141–149. 51. 2. 10.1002/jms.3733. 26889930. en. Martin. Brüggemann. Einar. Karu. Thorsten. Hoffmann. 2016JMSp...51..141B.
- Direct analysis in real time—a critical review on DART-MS. Analytical and Bioanalytical Chemistry. 2013-09-15. 1618-2642. 63–80. 406. 1. 10.1007/s00216-013-7316-0. 24036523. en. Jürgen H.. Gross. 9565130 .
- R.B. Cody . J.A. Laramée . H.D. Durst . Anal. Chem. . 2005 . 77 . 8 . 2297–2302 . 15828760 . 10.1021/ac050162j . Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions .
- Laiko. Victor V.. Baldwin. Michael A.. Burlingame. Alma L.. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry. 72. 4. 2000. 652–657. 0003-2700. 10.1021/ac990998k. 10701247.
- Ifa. Demian R.. Wu. Chunping. Ouyang. Zheng. Cooks. R. Graham. Desorption electrospray ionization and other ambient ionization methods: current progress and preview. The Analyst. 135. 4. 2010. 669–81. 0003-2654. 10.1039/b925257f. 20309441. 2010Ana...135..669I .
- Wu. Chunping. Dill. Allison L.. Eberlin. Livia S.. Cooks. R. Graham. Ifa. Demian R.. Mass spectrometry imaging under ambient conditions. Mass Spectrometry Reviews. 32. 3. 2013. 218–243. 0277-7037. 10.1002/mas.21360. 22996621. 3530640. 2013MSRv...32..218W.
- Gray. Alan L.. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. The Analyst. 110. 5. 1985. 551. 0003-2654. 10.1039/an9851000551. 1985Ana...110..551G .
- Coon. Joshua J.. McHale. Kevin J.. Harrison. W. W.. Atmospheric pressure laser desorption/chemical ionization mass spectrometry: a new ionization method based on existing themes. Rapid Communications in Mass Spectrometry. 16. 7. 2002. 681–685. 0951-4198. 10.1002/rcm.626. 11921247. 2002RCMS...16..681C.
- Shiea J, Huang MZ, Hsu HJ, Lee CY, Yuan CH, Beech I, Sunner J . Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids . Rapid Commun. Mass Spectrom. . 19 . 24 . 3701–4 . 2005 . 16299699 . 10.1002/rcm.2243 . 2005RCMS...19.3701S .
- Peng. Ivory X.. Ogorzalek Loo. Rachel R.. Margalith. Eli. Little. Mark W.. Loo. Joseph A.. Electrospray-assisted laser desorption ionization mass spectrometry (ELDI-MS) with an infrared laser for characterizing peptides and proteins. The Analyst. 135. 4. 2010. 767–72. 0003-2654. 10.1039/b923303b. 20349541. 2010Ana...135..767P. 3006438.
- Sampson JS, Hawkridge AM, Muddiman DC . Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry . J. Am. Soc. Mass Spectrom. . 17 . 12 . 1712–6 . 2006 . 16952462 . 10.1016/j.jasms.2006.08.003 . free .
- Nemes P, Vertes A . Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry . Analytical Chemistry. 79. 21. 8098–106. 2007 . 17900146 . 10.1021/ac071181r .
- Sampson. Jason S.. Muddiman. David C.. Atmospheric pressure infrared (10.6 μm) laser desorption electrospray ionization (IR-LDESI) coupled to a LTQ Fourier transform ion cyclotron resonance mass spectrometer. Rapid Communications in Mass Spectrometry. 23. 13. 2009. 1989–1992. 0951-4198. 10.1002/rcm.4113. 19504481.
- Berisha. Arton. Dold. Sebastian. Guenther. Sabine. Desbenoit. Nicolas. Takats. Zoltan. Spengler. Bernhard. Römpp. Andreas. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods. Rapid Communications in Mass Spectrometry. 28. 16. 2014. 1779–1791. 0951-4198. 10.1002/rcm.6960. 25559448. 2014RCMS...28.1779B .
- Jorabchi. Kaveh. Smith. Lloyd M.. Single Droplet Separations and Surface Partition Coefficient Measurements Using Laser Ablation Mass Spectrometry. Analytical Chemistry. 81. 23. 2009. 9682–9688. 0003-2700. 10.1021/ac901819r. 19886638. 2911232.
- Liu. Jia. Qiu. Bo. Luo. Hai. Fingerprinting of yogurt products by laser desorption spray post-ionization mass spectrometry. Rapid Communications in Mass Spectrometry. 24. 9. 2010. 1365–1370. 0951-4198. 10.1002/rcm.4527. 20391610. 2010RCMS...24.1365L.
- Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry . Annual Review of Analytical Chemistry . 2014 . Flanigan . P. . Levis . R. . 7 . 229–256 . 10.1146/annurev-anchem-071213-020343 . 25014343 . 2014ARAC....7..229F .
- Brady. John J.. Judge. Elizabeth J.. Levis. Robert J.. Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization. Rapid Communications in Mass Spectrometry. 23. 19. 2009. 3151–3157. 0951-4198. 10.1002/rcm.4226. 19714710. 2009RCMS...23.3151B.
- PESI was first introduced by Kenzo Hiraoka et al. in 2007 — Hiraoka K. . Nishidate K. . Mori K. . Asakawa D. . Suzuki S. . Development of probe electrospray using a solid needle . . 2007. 21 . 3139–3144 . 10.1002/rcm.3201 . 17708527 . 18 . 2007RCMS...21.3139H.
- He. Jiuming. Tang. Fei. Luo. Zhigang. Chen. Yi. Xu. Jing. Zhang. Ruiping. Wang. Xiaohao. Abliz. Zeper. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application. Rapid Communications in Mass Spectrometry. 25. 7. 2011. 843–850. 0951-4198. 10.1002/rcm.4920. 21416520. 2011RCMS...25..843H .
- Luo. Zhigang. He. Jiuming. Chen. Yi. He. Jingjing. Gong. Tao. Tang. Fei. Wang. Xiaohao. Zhang. Ruiping. Huang. Lan. Zhang. Lianfeng. Lv. Haining. Ma. Shuanggang. Fu. Zhaodi. Chen. Xiaoguang. Yu. Shishan. Abliz. Zeper. Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-Body Molecular Imaging under Ambient Conditions. Analytical Chemistry. 85. 5. 2013. 2977–2982. 0003-2700. 10.1021/ac400009s. 23384246. free.
- Jecklin. Matthias Conradin. Gamez. Gerardo. Touboul. David. Zenobi. Renato. Atmospheric pressure glow discharge desorption mass spectrometry for rapid screening of pesticides in food. Rapid Communications in Mass Spectrometry. 22. 18. 2008. 2791–2798. 0951-4198. 10.1002/rcm.3677. 18697232. 2008RCMS...22.2791J.
- Neidholdt. Evan L.. Beauchamp. J. L.. Compact Ambient Pressure Pyroelectric Ion Source for Mass Spectrometry. Analytical Chemistry. 79. 10. 2007. 3945–3948. 0003-2700. 10.1021/ac070261s. 17432828.
- Corso. Gaetano. D'Apolito. Oceania. Garofalo. Daniela. Paglia. Giuseppe. Dello Russo. Antonio. Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1811. 11. 2011. 669–679. 1388-1981. 10.1016/j.bbalip.2011.05.009. 21683155.
- Chen. Hao. Ouyang. Zheng. Cooks. R. Graham. Thermal Production and Reactions of Organic Ions at Atmospheric Pressure. Angewandte Chemie International Edition. 45. 22. 2006. 3656–3660. 1433-7851. 10.1002/anie.200600660. 16639755.
- McEwen. Charles N.. McKay. Richard G.. Larsen. Barbara S.. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Analytical Chemistry. 77. 23. 2005. 7826–7831. 0003-2700. 10.1021/ac051470k. 16316194.
- Steeb. Jennifer. Galhena. Asiri S.. Nyadong. Leonard. Janata. Jiří. Fernández. Facundo M.. Beta electron-assisted direct chemical ionization (BADCI) probe for ambient mass spectrometry. Chemical Communications. 31. 2009. 4699–701. 1359-7345. 10.1039/b909072j. 19641814.
- Jorabchi. Kaveh. Westphall. Michael S.. Smith. Lloyd M.. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets. Journal of the American Society for Mass Spectrometry. 19. 6. 2008. 833–840. 1044-0305. 10.1016/j.jasms.2008.02.012. 18387311. 2488387.
- Takats. Zoltan. Cotte-Rodriguez. Ismael. Talaty. Nari. Chen. Huanwen. Cooks. R. Graham. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chemical Communications. 15. 2005. 1950–1952. 1359-7345. 10.1039/b418697d. 15834468.
- Haapala. Markus. Pól. Jaroslav. Saarela. Ville. Arvola. Ville. Kotiaho. Tapio. Ketola. Raimo A.. Franssila. Sami. Kauppila. Tiina J.. Kostiainen. Risto. Desorption Atmospheric Pressure Photoionization. Analytical Chemistry. 79. 20. 2007. 7867–7872. 0003-2700. 10.1021/ac071152g. 17803282.
- Cody. Robert B.. Laramée. James A.. Durst. H. Dupont. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Analytical Chemistry. 77. 8. 2005. 2297–2302. 0003-2700. 10.1021/ac050162j. 15828760.
- Na. Na. Zhao. Mengxia. Zhang. Sichun. Yang. Chengdui. Zhang. Xinrong. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. Journal of the American Society for Mass Spectrometry. 18. 10. 2007. 1859–1862. 1044-0305. 10.1016/j.jasms.2007.07.027. 17728138. free.
- Forbes. Thomas P.. Brewer. Tim M.. Gillen. Greg. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry. The Analyst. 138. 19. 2013. 5665–73. 0003-2654. 10.1039/c3an01164j. 23923127. 2013Ana...138.5665F .
- Nyadong. Leonard. Galhena. Asiri S.. Fernández. Facundo M.. Desorption Electrospray/Metastable-Induced Ionization: A Flexible Multimode Ambient Ion Generation Technique. Analytical Chemistry. 81. 18. 2009. 7788–7794. 0003-2700. 10.1021/ac9014098. 19689156.
- Haddad. Renato. Sparrapan. Regina. Eberlin. Marcos N.. Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry. Rapid Communications in Mass Spectrometry. 20. 19. 2006. 2901–2905. 0951-4198. 10.1002/rcm.2680. 16941547. 2006RCMS...20.2901H.
- Chan. Chang-Ching. Bolgar. Mark S.. Miller. Scott A.. Attygalle. Athula B.. Desorption ionization by charge exchange (DICE) for sample analysis under ambient conditions by mass spectrometry. Journal of the American Society for Mass Spectrometry. 21. 9. 2010. 1554–1560. 1044-0305. 10.1016/j.jasms.2010.04.020. 20542709. free.
- Krieger. Sonja. Hayen. Heiko. Schmitz. Oliver J.. Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS. Analytical and Bioanalytical Chemistry. 405. 25. 2013. 8337–8345. 1618-2642. 10.1007/s00216-013-7238-x. 23912829. 10841740 .
- Jeng. Jingyueh. Lin. Che-Hsin. Shiea. Jentaie. Electrospray from Nanostructured Tungsten Oxide Surfaces with Ultralow Sample Volume. Analytical Chemistry. 77. 24. 2005. 8170–8173. 0003-2700. 10.1021/ac0512960. 16351172.
- Özdemir. Abdil. Chen. Chung-Hsuan. Electrode-assisted desorption electrospray ionization mass spectrometry. Journal of Mass Spectrometry. 45. 10. 2010. 1203–1211. 1076-5174. 10.1002/jms.1815. 20857387. 2010JMSp...45.1203O.
- Haddad. Renato. Sparrapan. Regina. Kotiaho. Tapio. Eberlin. Marcos N.. Easy Ambient Sonic-Spray Ionization-Membrane Interface Mass Spectrometry for Direct Analysis of Solution Constituents. Analytical Chemistry. 80. 3. 2008. 898–903. 0003-2700. 10.1021/ac701960q. 18179250.
- Chen. Huanwen. Venter. Andre. Cooks. R. Graham. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chemical Communications. 19. 2006. 2042–4. 1359-7345. 10.1039/b602614a. 16767269.
- Huang. Min-Zong. Hsu. Hsiu-Jung. Wu. Chen-I. Lin. Shu-Yao. Ma. Ya-Lin. Cheng. Tian-Lu. Shiea. Jentaie. Characterization of the chemical components on the surface of different solids with electrospray-assisted laser desorption ionization mass spectrometry. Rapid Communications in Mass Spectrometry. 21. 11. 2007. 1767–1775. 0951-4198. 10.1002/rcm.3011. 17479981. 2007RCMS...21.1767H.
- Hsu. Hsiu-Jung. Kuo. Tseng-Long. Wu. Shu-Huey. Oung. Jung-Nan. Shiea. Jentaie. Characterization of Synthetic Polymers by Electrospray-Assisted Pyrolysis Ionization-Mass Spectrometry. Analytical Chemistry. 77. 23. 2005. 7744–7749. 0003-2700. 10.1021/ac051116m. 16316184.
- Qiao. Liang. Tobolkina. Elena. Lesch. Andreas. Bondarenko. Alexandra. Zhong. Xiaoqin. Liu. Baohong. Pick. Horst. Vogel. Horst. Girault. Hubert H.. Electrostatic Spray Ionization Mass Spectrometry Imaging. Analytical Chemistry. 86. 4. 2014. 2033–2041. 0003-2700. 10.1021/ac4031779. 24446793.
- Andrade. Francisco J.. Shelley. Jacob T.. Wetzel. William C.. Webb. Michael R.. Gamez. Gerardo. Ray. Steven J.. Hieftje. Gary M.. Atmospheric Pressure Chemical Ionization Source. 1. Ionization of Compounds in the Gas Phase. Analytical Chemistry. 80. 8. 2008. 2646–2653. 0003-2700. 10.1021/ac800156y. 18345693.
- Grimm. Ronald L.. Beauchamp. J. L.. Field-Induced Droplet Ionization Mass Spectrometry. The Journal of Physical Chemistry B. 107. 51. 2003. 14161–14163. 1520-6106. 10.1021/jp037099r.
- Ren. Xinxin. Liu. Jia. Zhang. Chengsen. Luo. Hai. Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode. Rapid Communications in Mass Spectrometry. 27. 5. 2013. 613–620. 0951-4198. 10.1002/rcm.6499. 23413220. 2013RCMS...27..613R.
- Galhena. Asiri S.. Harris. Glenn A.. Nyadong. Leonard. Murray. Kermit K.. Fernández. Facundo M.. Small Molecule Ambient Mass Spectrometry Imaging by Infrared Laser Ablation Metastable-Induced Chemical Ionization. Analytical Chemistry. 82. 6. 2010. 2178–2181. 0003-2700. 10.1021/ac902905v. 20155978. free.
- Van Berkel. Gary J.. Pasilis. Sofie P.. Ovchinnikova. Olga. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. Journal of Mass Spectrometry. 43. 9. 2008. 1161–1180. 1076-5174. 10.1002/jms.1440. 18671242. 2008JMSp...43.1161V.
- Rezenom. Yohannes H.. Dong. Jianan. Murray. Kermit K.. Infrared laser-assisted desorption electrospray ionization mass spectrometry. The Analyst. 133. 2. 2008. 226–32. 0003-2654. 10.1039/b715146b. 18227946. 2008Ana...133..226R .
- Nemes. Peter. Vertes. Akos. Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry. Analytical Chemistry. 79. 21. 2007. 8098–8106. 0003-2700. 10.1021/ac071181r. 17900146.
- Shelley. Jacob T.. Ray. Steven J.. Hieftje. Gary M.. Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging. Analytical Chemistry. 80. 21. 2008. 8308–8313. 0003-2700. 10.1021/ac801594u. 18826246.
- Book: K. Janssens. R. Van Grieken. Non-destructive Micro Analysis of Cultural Heritage Materials. 26 November 2004. Elsevier. 978-0-08-045442-9. 313–.
- Wu. Jin. Hughes. Christopher S.. Picard. Pierre. Letarte. Sylvain. Gaudreault. Mireille. Lévesque. Jean-François. Nicoll-Griffith. Deborah A.. Bateman. Kevin P.. High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. Analytical Chemistry. 79. 12. 2007. 4657–4665. 0003-2700. 10.1021/ac070221o. 17497828.
- Web site: LESA – A New Mass Spectrometry-based Surface Analysis Technique Using the TriVersa NanoMate . 2014-07-20 . https://web.archive.org/web/20140727013255/http://www.advion.com/news-events/press-releases/100930-LiquidExtractionSurfaceAnalysis-LESA/ . 2014-07-27 . dead .
- Cheng. Sy-Chyi. Cheng. Tain-Lu. Chang. Hui-Chiu. Shiea. Jentaie. Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions. Analytical Chemistry. 81. 3. 2009. 868–874. 0003-2700. 10.1021/ac800896y. 19178334.
- Van Berkel. Gary J.. Kertesz. Vilmos. King. Richard C.. High-Throughput Mode Liquid Microjunction Surface Sampling Probe. Analytical Chemistry. 81. 16. 2009. 7096–7101. 0003-2700. 10.1021/ac901098d. 19606841.
- Saha. Subhrakanti. Chen. Lee Chuin. Mandal. Mridul Kanti. Hiraoka. Kenzo. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry. Journal of the American Society for Mass Spectrometry. 24. 3. 2013. 341–347. 1044-0305. 10.1007/s13361-012-0564-y. 23423791. 2013JASMS..24..341S . 39368022 .
- Quarles. C. Derrick. Carado. Anthony J.. Barinaga. Charles J.. Koppenaal. David W.. Marcus. R. Kenneth. Liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source for elemental mass spectrometry: preliminary parametric evaluation and figures of merit. Analytical and Bioanalytical Chemistry. 402. 1. 2011. 261–268. 1618-2642. 10.1007/s00216-011-5359-7. 21910014. 33571580 .
- Trimpin. S.. Inutan. E. D.. Herath. T. N.. McEwen. C. N.. Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions. Molecular & Cellular Proteomics. 9. 2. 2009. 362–367. 1535-9476. 10.1074/mcp.M900527-MCP200. free . 19955086. 2830846.
- Harper. Jason D.. Charipar. Nicholas A.. Mulligan. Christopher C.. Zhang. Xinrong. Cooks. R. Graham. Ouyang. Zheng. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Analytical Chemistry. 80. 23. 2008. 9097–9104. 0003-2700. 10.1021/ac801641a. 19551980.
- McEwen. Charles N.. Pagnotti. Vincent S.. Inutan. Ellen D.. Trimpin. Sarah. New Paradigm in Ionization: Multiply Charged Ion Formation from a Solid Matrix without a Laser or Voltage. Analytical Chemistry. 82. 22. 2010. 9164–9168. 0003-2700. 10.1021/ac102339y. 20973512.
- Sampson. Jason S.. Hawkridge. Adam M.. Muddiman. David C.. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry. 17. 12. 2006. 1712–1716. 1044-0305. 10.1016/j.jasms.2006.08.003. 16952462. free.
- Wang. Bo. Ding. Xuelu. Zhao. Zhongjun. Duan. Yixiang. Method development for directly screening pesticide residues in foodstuffs using ambient microfabricated glow discharge plasma (MFGDP) desorption/ionization mass spectrometry. International Journal of Mass Spectrometry. 2014. 1387-3806. 10.1016/j.ijms.2014.05.018. 377. 507–514. 2015IJMSp.377..507W .
- Zhan. Xuefang. Zhao. Zhongjun. Yuan. Xin. Wang. Qihui. Li. Dandan. Xie. Hong. Li. Xuemei. Zhou. Meigui. Duan. Yixiang. Microwave-Induced Plasma Desorption/Ionization Source for Ambient Mass Spectrometry. Analytical Chemistry. 85. 9. 2013. 4512–4519. 0003-2700. 10.1021/ac400296v. 23534913.
- Roach. Patrick J.. Laskin. Julia. Julia Laskin. Laskin. Alexander. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. The Analyst. 135. 9. 2010. 2233–6. 0003-2654. 10.1039/c0an00312c. 20593081. 2010Ana...135.2233R .
- Chen. Huanwen. Wortmann. Arno. Zenobi. Renato. Neutral desorption sampling coupled to extractive electrospray ionization mass spectrometry for rapid differentiation of biosamples by metabolomic fingerprinting. Journal of Mass Spectrometry. 42. 9. 2007. 1123–1135. 1076-5174. 10.1002/jms.1282. 17721903. 2007JMSp...42.1123C.
- Ratcliffe. Lucy V.. Rutten. Frank J. M.. Barrett. David A.. Whitmore. Terry. Seymour. David. Greenwood. Claire. Aranda-Gonzalvo. Yolanda. Robinson. Steven. McCoustra. Martin. Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Analytical Chemistry. 79. 16. 2007. 6094–6101. 0003-2700. 10.1021/ac070109q. 17628043.
- Paine. Martin R. L.. Barker. Philip J.. Blanksby. Stephen J.. Paint Spray Mass Spectrometry for the Detection of Additives from Polymers on Conducting Surfaces. Mass Spectrometry Letters. 2012. 3. 1. 25–28. 10.5478/MSL.2012.3.1.025. free.
- Feng. Baosheng. Zhang. Jialing. Chang. Cuilan. Li. Liping. Li. Min. Xiong. Xingchuang. Guo. Chengan. Tang. Fei. Bai. Yu. Liu. Huwei. Ambient Mass Spectrometry Imaging: Plasma Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Its Applications. Analytical Chemistry. 86. 9. 2014. 4164–4169. 0003-2700. 10.1021/ac403310k. 24670045.
- Zhang. Jialing. Zhou. Zhigui. Yang. Jianwang. Zhang. Wei. Bai. Yu. Liu. Huwei. Thin Layer Chromatography/Plasma Assisted Multiwavelength Laser Desorption Ionization Mass Spectrometry for Facile Separation and Selective Identification of Low Molecular Weight Compounds. Analytical Chemistry. 84. 3. 2012. 1496–1503. 0003-2700. 10.1021/ac202732y. 22243032.
- Zhou. Yueming. Zhang. Ning. Li. Yafeng. Xiong. Caiqiao. Chen. Suming. Chen. Yongtai. Nie. Zongxiu. Plasma-based ambient sampling/ionization/transmission integrated source for mass spectrometry. The Analyst. 139. 21. 5387–92. 2014. 0003-2654. 10.1039/C4AN00979G. 25147876. 2014Ana...139.5387Z .
- Zhu. Hongying. Li. Gongyu. Huang. Guangming. Screening of Complicated Matrixes with Paper Assisted Ultrasonic Spray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry. 25. 6. 2014. 935–942. 1044-0305. 10.1007/s13361-014-0862-7. 24664810. 2014JASMS..25..935Z . 2521462 .
- Hiraoka. Kenzo. Nishidate. Kentaro. Mori. Kunihiko. Asakawa. Daiki. Suzuki. Shigeo. Development of probe electrospray using a solid needle. Rapid Communications in Mass Spectrometry. 21. 18. 2007. 3139–3144. 0951-4198. 10.1002/rcm.3201. 17708527. 2007RCMS...21.3139H.
- Liu. Jiangjiang. Wang. He. Manicke. Nicholas E.. Lin. Jin-Ming. Cooks. R. Graham. Ouyang. Zheng. Development, Characterization, and Application of Paper Spray Ionization. Analytical Chemistry. 82. 6. 2010. 2463–2471. 0003-2700. 10.1021/ac902854g. 20158226.
- Huang. Yun-Qing. You. Jin-Qing. Yuan. Bi-Feng. Feng. Yu-Qi. Sample preparation and direct electrospray ionization on a tip column for rapid mass spectrometry analysis of complex samples. The Analyst. 137. 19. 2012. 4593–7. 0003-2654. 10.1039/c2an35856e. 22898704. 2012Ana...137.4593H .
- Dixon. R. Brent. Sampson. Jason S.. Muddiman. David C.. Generation of multiply charged peptides and proteins by radio frequency acoustic desorption and ionization for mass spectrometric detection. Journal of the American Society for Mass Spectrometry. 20. 4. 2009. 597–600. 1044-0305. 10.1016/j.jasms.2008.11.024. 19112029. free.
- Dixon. R. Brent. Sampson. Jason S.. Hawkridge. Adam M.. Muddiman. David C.. Ambient Aerodynamic Ionization Source for Remote Analyte Sampling and Mass Spectrometric Analysis. Analytical Chemistry. 80. 13. 2008. 5266–5271. 0003-2700. 10.1021/ac800289f. 18529018.
- Schäfer. Karl-Christian. Dénes. Júlia. Albrecht. Katalin. Szaniszló. Tamás. Balog. Júlia. Skoumal. Réka. Katona. Mária. Tóth. Miklós. Balogh. Lajos. Takáts. Zoltán. In Vivo, In Situ Tissue Analysis Using Rapid Evaporative Ionization Mass Spectrometry. Angewandte Chemie International Edition. 48. 44. 2009. 8240–8242. 1433-7851. 10.1002/anie.200902546. 19746375.
- Bennett. Rachel V.. Morzan. Ezequiel M.. Huckaby. Jacob O.. Monge. María Eugenia. Christensen. Henrick I.. Fernández. Facundo M.. Robotic plasma probe ionization mass spectrometry (RoPPI-MS) of non-planar surfaces. The Analyst. 139. 11. 2014. 2658–62. 0003-2654. 10.1039/c4an00277f. 24603806. 2014Ana...139.2658B . 11336/4102 . free.
- Crotti. Sara. Traldi. Pietro. Aspects of the Role of Surfaces in Ionization Processes. Combinatorial Chemistry & High Throughput Screening. 12. 2. 2009. 125–136. 1386-2073. 10.2174/138620709787315427. 19199882.
- Pagnotti. Vincent S.. Inutan. Ellen D.. Marshall. Darrell D.. McEwen. Charles N.. Trimpin. Sarah. Inlet Ionization: A New Highly Sensitive Approach for Liquid Chromatography/Mass Spectrometry of Small and Large Molecules. Analytical Chemistry. 83. 20. 2011. 7591–7594. 0003-2700. 10.1021/ac201982r. 21899326.
- Heron. Scott R.. Wilson. Rab. Shaffer. Scott A.. Goodlett. David R.. Cooper. Jonathan M.. Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry. Analytical Chemistry. 82. 10. 2010. 3985–3989. 0003-2700. 10.1021/ac100372c. 20364823. 3073871.
- Wu. Ching. Siems. William F.. Hill. Herbert H.. Secondary Electrospray Ionization Ion Mobility Spectrometry/Mass Spectrometry of Illicit Drugs. Analytical Chemistry. 72. 2. 2000. 396–403. 0003-2700. 10.1021/ac9907235. 10658336.
- Mandal. Mridul Kanti. Yoshimura. Kentaro. Saha. Subhrakanti. Ninomiya. Satoshi. Rahman. Md. Obaidur. Yu. Zhan. Chen. Lee Chuin. Shida. Yasuo. Takeda. Sen. Nonami. Hiroshi. Hiraoka. Kenzo. Solid probe assisted nanoelectrospray ionization mass spectrometry for biological tissue diagnostics. The Analyst. 137. 20. 2012. 4658–61. 0003-2654. 10.1039/c2an36006c. 22937532. 2012Ana...137.4658M .
- Martin. Audrey N.. Farquar. George R.. Steele. Paul T.. Jones. A. Daniel. Frank. Matthias. Use of Single Particle Aerosol Mass Spectrometry for the Automated Nondestructive Identification of Drugs in Multicomponent Samples. Analytical Chemistry. 81. 22. 2009. 9336–9342. 0003-2700. 10.1021/ac901208h. 19842633.
- Hecht. Max. Evard. Hanno. Takkis. Kalev. Veigure. Rūta. Aro. Rudolf. Lohmus. Rynno. Herodes. Koit. Leito. Ivo. Kipper. Karin. Sponge Spray — Reaching New Dimensions of Direct Sampling and Analysis by MS. Analytical Chemistry. 89. 21. 2017. 11592–11597. 0003-2700. 10.1021/acs.analchem.7b02957. 29028329.
- Van Berkel. Gary J.. Sanchez. Amaury D.. Quirke. J. Martin E.. Thin-Layer Chromatography and Electrospray Mass Spectrometry Coupled Using a Surface Sampling Probe. Analytical Chemistry. 74. 24. 2002. 6216–6223. 0003-2700. 10.1021/ac020540+. 12510741.
- Neidholdt. Evan L.. Beauchamp. J. L.. Switched Ferroelectric Plasma Ionizer (SwiFerr) for Ambient Mass Spectrometry. Analytical Chemistry. 83. 1. 2011. 38–43. 0003-2700. 10.1021/ac1013833. 21128617.
- Lin. Jia-Yi. Chen. Tsung-Yi. Chen. Jen-Yi. Chen. Yu-Chie. Multilayer gold nanoparticle-assisted thermal desorption ambient mass spectrometry for the analysis of small organics. The Analyst. 135. 10. 2010. 2668–75. 0003-2654. 10.1039/c0an00157k. 20721383. 2010Ana...135.2668L .
- Chipuk. Joseph E.. Brodbelt. Jennifer S.. Transmission mode desorption electrospray ionization. Journal of the American Society for Mass Spectrometry. 19. 11. 2008. 1612–1620. 1044-0305. 10.1016/j.jasms.2008.07.002. 18684639. free.
- Kerian. Kevin S.. Jarmusch. Alan K.. Cooks. R. Graham. Touch spray mass spectrometry for in situ analysis of complex samples. The Analyst. 139. 11. 2014. 2714–20. 0003-2654. 10.1039/c4an00548a. 24756256. 2014Ana...139.2714K. 4063212.
- Chen. Tsung-Yi. Chao. Chin-Sheng. Mong. Kwok-Kong Tony. Chen. Yu-Chie. Ultrasonication-assisted spray ionization mass spectrometry for on-line monitoring of organic reactions. Chemical Communications. 46. 44. 2010. 8347–9. 1359-7345. 10.1039/c0cc02629h. 20957254.
- Santos. Vanessa G.. Regiani. Thaís. Dias. Fernanda F. G.. Wanderson Romão. Romão. Wanderson. Jara. Jose Luis Paz. Klitzke. Clécio F.. Coelho. Fernando. Eberlin. Marcos N.. Venturi Easy Ambient Sonic-Spray Ionization. Analytical Chemistry. 83. 4. 2011. 1375–1380. 0003-2700. 10.1021/ac102765z. 21235233.
- Jen-Ying Liu, Pei-Chun Chen, Yea-Wenn Liou, Kai-Yin Chang. Cheng-Huang Lin. 2017. Development and Application of a Brush Spray Derived from a Calligraphy Brush Style Synthetic Hair Pen for Use in ESI/MS. Mass Spectrometry. 6. Spec Iss. s0058. 10.5702/massspectrometry.s0058. 5358408. 28337397.
- Yea-Wenn Liou, Jian-Siang Wang, Chien-Chung Chen and Cheng-Huang Lin. 2017. Development of an on-line microextraction method for use in fiber-spray/mass spectrometry. International Journal of Mass Spectrometry. 421. 178–183. 10.1016/j.ijms.2017.07.001. 2017IJMSp.421..178L.