Laguerre transform explained

\alpha(x)
L
n
as kernels of the transform.[1] [2] [3] [4]

The Laguerre transform of a function

f(x)

is

L\{f(x)\}=\tildef\alpha(n)=

infty
\int
0

e-xx\alpha

\alpha(x)
L
n

f(x)dx

The inverse Laguerre transform is given by

L-1\{\tildef\alpha(n)\}=f(x)=

infty
\sum
n=0

\binom{n+\alpha}{n}-1

1
\Gamma(\alpha+1)

\tildef\alpha(n)

\alpha(x)
L
n

Some Laguerre transform pairs

f(x)

\tildef\alpha(n)

xa-1,a>0

\Gamma(a+\alpha)\Gamma(n-a+1)
n!\Gamma(1-a)

e-ax,a>-1

\Gamma(n+\alpha+1)an
n!(a+1)n+\alpha+1

\sinax,a>0,\alpha=0

an
2)
(1+a
n+1
2

\sin\left[n\tan-1

1
a

+\tan-1(-a)\right]

\cosax,a>0,\alpha=0

an
2)
(1+a
n+1
2

\cos\left[n\tan-1

1
a

+\tan-1(-a)\right]

\alpha(x)
L
m

\binom{n+\alpha}{n}\Gamma(\alpha+1)\deltamn

e-ax

\alpha(x)
L
m
\Gamma(n+\alpha+1)\Gamma(m+\alpha+1)
n!m!\Gamma(\alpha+1)
(a-1)n-m+\alpha+1
an+m+2\alpha+2

{}2F

;
1\left(n+\alpha+1;m+\alpha+1
\alpha+1
1
a2

\right)

[5]

f(x)x\beta-\alpha

n
\sum
m=0

(m!)-1(\alpha-\beta)m

\beta(x)
L
n-m

exx-\alpha\Gamma(\alpha,x)

infty
\sum
n=0

\binom{n+\alpha}{n}

\Gamma(\alpha+1)
n+1

x\beta,\beta>0

infty
\Gamma(\alpha+\beta+1)\sum
n=0

\binom{n+\alpha}{n}

(-\beta)
n\Gamma(\alpha+1)
\Gamma(n+\alpha+1)

(1-z)-(\alpha+1)\exp\left(

xz
z-1

\right),

z<1, \ \alpha\geq 0\,
infty
\sum
n=0

\binom{n+\alpha}{n}\Gamma(\alpha+1)zn

(xz)-\alpha/2ez

1/2
J
\alpha\left[2(xz)

\right],

z<1, \ \alpha\geq 0\,
infty
\sum\binom{n+\alpha}{n}
n=0
\Gamma(\alpha+1)
\Gamma(n+\alpha+1)

zn

d
dx

f(x)

\tildef\alpha(n)-

n
\alpha\sum
k=0

\tildef\alpha-1(k)+

n-1
\sum
k=0

\tildef\alpha(k)

xd
dx

f(x),\alpha=0

-(n+1)\tildef0(n+1)+n\tildef0(n)

xf(t)dt,
\int
0

\alpha=0

\tildef0(n)-\tildef0(n-1)

exx-\alpha

d
dx

\left[e-xx\alpha+1

d
dx

\right]f(x)

-n\tildef\alpha(n)

\left\{exx-\alpha

d
dx

\left[e-xx\alpha+1

d
dx

\right]\right\}kf(x)

(-1)knk\tildef\alpha(n)

\alpha(x),
L
n

\alpha>-1

\Gamma(n+\alpha+1)
n!
\alpha(x),
xL
n

\alpha>-1

\Gamma(n+\alpha+1)
n!

(2n+1+\alpha)

1
\pi
infty
\int
0

e-tf(t)dt

\pi
\int
0

e\sqrt{xt\cos\theta}\cos(\sqrt{xt}\sin\theta)g(x+t-2\sqrt{xt}\cos\theta)d\theta,\alpha=0

\tildef0(n)\tildeg0(n)

\Gamma(n+\alpha+1)
\sqrt\pi\Gamma(n+1)
infty
\int
0

e-tt\alphaf(t)dt

\pi
\int
0

e-\sqrt{xt\cos\theta}\sin2\alpha\thetag(x+t+2\sqrt{xt}\cos\theta)

J\alpha-1/2(\sqrt{xt
\sin\theta)}{[(\sqrt{xt}\sin\theta)/2]

\alpha-1/2

}d\theta\,

\tildef\alpha(n)\tildeg\alpha(n)

[6]

Notes and References

  1. Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.
  2. Debnath, L. "On Laguerre transform." Bull. Calcutta Math. Soc 52 (1960): 69-77.
  3. Debnath, L. "Application of Laguerre Transform on heat conduction problem." Annali dell’Università di Ferrara 10.1 (1961): 17-19.
  4. McCully, Joseph. "The Laguerre transform." SIAM Review 2.3 (1960): 185-191.
  5. Howell, W. T. "CI. A definite integral for legendre functions." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25.172 (1938): 1113-1115.
  6. Debnath, L. "On Faltung theorem of Laguerre transform." Studia Univ. Babes-Bolyai, Ser. Phys 2 (1969): 41-45.