In mathematics, Lady Windermere's Fan is a telescopic identity employed to relate global and local error of a numerical algorithm. The name is derived from Oscar Wilde's 1892 play Lady Windermere's Fan, A Play About a Good Woman.
Let
E( \tau,t0,y(t0) )
y(t0+\tau)=E(\tau,t0,y(t0)) y(t0)
t0
y(t)
y(t0)
Further let
yn
n\in\N, n\leN
tn
t0<tn\leT=tN
yn
\Phi( hn,tn,y(tn) )
yn=\Phi( hn-1,tn-1,y(tn-1) ) yn-1
hn=tn+1-tn
The approximation operator represents the numerical scheme used. For a simple explicit forward Euler method with step width
h
\PhiEuler( h,tn-1,y(tn-1) ) yn-1=(1+h
d | |
dt |
) yn-1
The local error
dn
dn:=D( hn-1,tn-1,y(tn-1) ) yn-1:=\left[\Phi( hn-1,tn-1,y(tn-1) )-E( hn-1,tn-1,y(tn-1) )\right] yn-1
In abbreviation we write:
\Phi(hn):=\Phi( hn,tn,y(tn) )
E(hn):=E( hn,tn,y(tn) )
D(hn):=D( hn,tn,y(tn) )
Then Lady Windermere's Fan for a function of a single variable
t
yN-y(tN)=
N-1 | |
\prod | |
j=0 |
\Phi(hj) (y0-y(t0))+
N-1 | |
\sum | |
j=n |
\Phi(hj) dn
with a global error of
yN-y(tN)
\begin{align} yN-y(tN)&{}= yN-
N-1 | |
\underbrace{\prod | |
j=0 |
\Phi(hj) y(t0)+
N-1 | |
\prod | |
j=0 |
\Phi(hj) y(t0)}=0-y(tN)\\ &{}=yN-
N-1 | |
\prod | |
j=0 |
\Phi(hj) y(t0)+
N-1 | |
\underbrace{\sum | |
n=0 |
N-1 | |
\prod | |
j=n |
\Phi(hj) y(tn)-
N-1 | |
\sum | |
j=n |
\Phi(hj) y(tn)}
|
\\ &{}=
N-1 | |
\prod | |
j=0 |
\Phi(hj) y0-
N-1 | |
\prod | |
j=0 |
\Phi(hj) y(t0)+
N-1 | |
\sum | |
j=n-1 |
\Phi(hj) y(tn-1)-
N-1 | |
\sum | |
j=n |
\Phi(hj) y(tn)\\ &{}=
N-1 | |
\prod | |
j=0 |
\Phi(hj) (y0-y(t0))+
N-1 | |
\sum | |
j=n |
\Phi(hj)\left[\Phi(hn-1)-E(hn-1)\right] y(tn-1)\\ &{}=
N-1 | |
\prod | |
j=0 |
\Phi(hj) (y0-y(t0))+
N-1 | |
\sum | |
j=n |
\Phi(hj) dn \end{align}