X
(Xn,inm)
X
\left(Xn,inm\right)
Xn
If each of the bonding maps
inm
Xn
Xn+1
Xn.
The topology on
X
U
0
U\capXn
0
Xn
n.
A strict LB-space is complete, barrelled, and bornological (and thus ultrabornological).
If
D
Cc(D)
D
K\subseteqD,
Cc(K)
K
D
Let
\begin{alignat}{4} \Rinfty~&:=~\left\{\left(x1,x2,\ldots\right)\in\R\N~:~allbutfinitelymanyxiareequalto0\right\}, \end{alignat}
denote the , where
\R\N
n\in\N,
\Rn
\operatorname{In} | |
\Rn |
:\Rn\to\Rinfty
\operatorname{In} | |
\Rn |
\left(x1,\ldots,xn\right):=\left(x1,\ldots,xn,0,0,\ldots\right)
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)=\left\{\left(x1,\ldots,xn,0,0,\ldots\right)~:~x1,\ldots,xn\in\R\right\}=\Rn x \left\{(0,0,\ldots)\right\}
and consequently,
\Rinfty=cupn\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right).
Endow the set
\Rinfty
\tauinfty
l{F}:=\left\{
\operatorname{In} | |
\Rn |
~:~n\in\N \right\}
\Rinfty
\tauinfty
\Rinfty
\R\N,
\R\N
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)
\operatorname{In} | |
\Rn |
:\Rn\to\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right);
\Rn
\operatorname{In} | |
\Rn |
.
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)
\left(\Rinfty,\tauinfty\right).
S\subseteq\Rinfty
\left(\Rinfty,\tauinfty\right)
n\in\N,
S\cap\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right).
\tauinfty
S:=\left\{ \operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)~:~n\in\N \right\}.
\left(\Rinfty,\tauinfty\right)
v\in\Rinfty
v\bull
\Rinfty
v\bull\tov
\left(\Rinfty,\tauinfty\right)
n\in\N
v
v\bull
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)
v\bull\tov
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right).
Often, for every
n\in\N,
\operatorname{In} | |
\Rn |
\Rn
\operatorname{Im}\left(
\operatorname{In} | |
\Rn |
\right)
\Rinfty;
\left(x1,\ldots,xn\right)\inRn
\left(x1,\ldots,xn,0,0,0,\ldots\right)
\left(\left(\Rinfty,\tauinfty\right),
\left(\operatorname{In} | |
\Rn |
\right)n\right)
\left(
n\right) | |
\left(\R | |
n\in\N |
,
\Rn | |
\left(\operatorname{In} | |
\Rm |
\right)m,\N\right),
m\leqn,
\Rn | |
\operatorname{In} | |
\Rm |
:\Rm\to\Rn
\Rn | |
\operatorname{In} | |
\Rm |
\left(x1,\ldots,xm\right):=\left(x1,\ldots,xm,0,\ldots,0\right),
n-m
There exists a bornological LB-space whose strong bidual is bornological. There exists an LB-space that is not quasi-complete.