Krull's separation lemma explained

In abstract algebra, Krull's separation lemma is a lemma in ring theory. It was proved by Wolfgang Krull in 1928.[1]

Statement of the lemma

Let

I

be an ideal and let

M

be a multiplicative system (i.e.

M

is closed under multiplication) in a ring

R

, and suppose

I\capM=\varnothing

. Then there exists a prime ideal

P

satisfying

I\subseteqP

and

P\capM=\varnothing

.[2]

References

  1. Krull. Wolfgang. Zur Theorie der zweiseitigen Ideale in nichtkommutativen Bereichen. Mathematische Zeitschrift. 28. 1. 1928. 481–503. 0025-5874. 10.1007/BF01181179. 122870138 .
  2. Sun, Shu-Hao. On separation lemmas. Journal of Pure and Applied Algebra. 78. 3. 1992. 301–310. 10.1016/0022-4049(92)90112-S. free.