Kronecker's lemma explained

In mathematics, Kronecker's lemma (see, e.g.,) is a result about the relationship between convergence of infinite sums and convergence of sequences. The lemma is often used in the proofs of theorems concerning sums of independent random variables such as the strong Law of large numbers. The lemma is named after the German mathematician Leopold Kronecker.

The lemma

If

(xn)

infty
n=1
is an infinite sequence of real numbers such that
infty
\sum
m=1

xm=s

exists and is finite, then we have for all

0<b1\leqb2\leqb3\leq\ldots

and

bn\toinfty

that

\limn

1{b
n}\sum
n
k=1

bkxk=0.

Proof

Let

Sk

denote the partial sums of the xs. Using summation by parts,
1{b
n}\sum
n
k=1

bkxk=Sn-

1{b
n}\sum
n-1
k=1

(bk+1-bk)Sk

Pick any ε > 0. Now choose N so that

Sk

is ε-close to s for k > N. This can be done as the sequence

Sk

converges to s. Then the right hand side is:

Sn-

1{b
n}\sum
N-1
k=1

(bk+1-bk)Sk-

1{b
n}\sum
n-1
k=N

(bk+1-bk)Sk

=Sn-

1{b
n}\sum
N-1
k=1

(bk+1-bk)Sk-

1{b
n}\sum
n-1
k=N

(bk+1-bk)s-

1{b
n}\sum
n-1
k=N

(bk+1-bk)(Sk-s)

=Sn-

1{b
n}\sum
N-1
k=1

(bk+1-bk)Sk-

bn-bN
bn

s-

1{b
n}\sum
n-1
k=N

(bk+1-bk)(Sk-s).

Now, let n go to infinity. The first term goes to s, which cancels with the third term. The second term goes to zero (as the sum is a fixed value). Since the b sequence is increasing, the last term is bounded by

\epsilon(bn-bN)/bn\leq\epsilon

.

References