Koras–Russell cubic threefold explained
In algebraic geometry, the Koras - Russell cubic threefolds are smooth affine complex threefolds diffeomorphic to
studied by . They have a hyperbolic action of a one-dimensional
torus
with a unique fixed point, such that the quotients of the threefold and the
tangent space of the fixed point by this action are isomorphic. They were discovered in the process of proving the Linearization Conjecture in dimension 3. A linear action of
on the affine space
is one of the form
, where
and
. The Linearization Conjecture in dimension
says that every algebraic action of
on the complex affine space
is linear in some algebraic coordinates on
. M. Koras and P. Russell made a key step towards the solution in dimension 3, providing a list of threefolds (now called Koras-Russell threefolds) and proving
[1] that the Linearization Conjecture for
holds if all those threefolds are
exotic affine 3-spaces, that is, none of them is isomorphic to
. This was later shown by Kaliman and Makar-Limanov using the ML-invariant of an
affine variety, which had been invented exactly for this purpose.
Earlier than the above referred paper, Russell noticed that the hypersurface
has properties very similar to the affine 3-space like contractibility and was interested in distinguishing them as
algebraic varieties. This now follows from the computation that
and
.
Notes and References
- Koras. Mariusz. Russell. Peter. C∗-actions on C3: the smooth locus of the quotient is not of hyperbolic type. J. Algebraic Geom.. 1999. 8. 4. 603–694.