In mathematics, the Kolmogorov continuity theorem is a theorem that guarantees that a stochastic process that satisfies certain constraints on the moments of its increments will be continuous (or, more precisely, have a "continuous version"). It is credited to the Soviet mathematician Andrey Nikolaevich Kolmogorov.
Let
(S,d)
X\colon[0,+infty) x \Omega\toS
T>0
\alpha,\beta,K
E[d(Xt,
\alpha] | |
X | |
s) |
\leqK|t-s|1
for all
0\leqs,t\leqT
\tilde{X}
X
\tilde{X}\colon[0,+infty) x \Omega\toS
\tilde{X}
t\geq0
P(Xt=\tilde{X}t)=1.
Furthermore, the paths of
\tilde{X}
\gamma
0<\gamma<\tfrac\beta\alpha
In the case of Brownian motion on
Rn
\alpha=4
\beta=1
K=n(n+2)
m
\alpha=2m
\beta=m-1
K
n
m
. Daniel W. Stroock, S. R. Srinivasa Varadhan . Daniel W. Stroock, S. R. Srinivasa Varadhan . Multidimensional Diffusion Processes . Springer, Berlin . 1997 . 978-3-662-22201-0. p. 51