In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976.[1]
In his 1947 paper,[2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations. Goodstein also suggested the Greek names tetration, pentation, etc., for the extended operations beyond exponentiation. The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc.Various notations have been used to represent hyperoperations. One such notation is
Hn(a,b)
\uparrow
\uparrow
\uparrow\uparrow
\uparrow\uparrow\uparrow
a\ge0,n\ge1,b\ge0
\uparrown
The hyperoperations naturally extend the arithmetic operations of addition and multiplication as follows.Addition by a natural number is defined as iterated incrementation:
\begin{matrix} H1(a,b)=a+b=&a+\underbrace{1+1+...+1}\\ &bcopiesof1 \end{matrix}
\begin{matrix} H2(a,b)=a x b=&\underbrace{a+a+...+a}\\ &bcopiesofa \end{matrix}
For example,
\begin{matrix} 4 x 3&=&\underbrace{4+4+4}&=&12\\ &&3copiesof4 \end{matrix}
Exponentiation for a natural power
b
\begin{matrix} a\uparrowb=H3(a,b)=ab=&\underbrace{a x a x ... x a}\\ &bcopiesofa \end{matrix}
For example,
\begin{matrix} 4\uparrow3=43=&\underbrace{4 x 4 x 4}&=&64\\ &3copiesof4 \end{matrix}
Tetration is defined as iterated exponentiation, which Knuth denoted by a “double arrow”:
\begin{matrix} a\uparrow\uparrowb=H4(a,b)=&
| |||||||||||||||||||
\underbrace{a |
For example,
\begin{matrix} 4\uparrow\uparrow3=&
44 | |
\underbrace{4 |
Expressions are evaluated from right to left, as the operators are defined to be right-associative.
According to this definition,
3\uparrow\uparrow2=33=27
3\uparrow\uparrow
33 | |
3=3 |
=327=7,625,597,484,987
3\uparrow\uparrow
| |||||
4=3 |
327 | |
=3 |
=37625597484987 ≈ 1.2580143 x 103638334640024
3\uparrow\uparrow
| |||||||||
5=3 |
| |||||
=3 |
37625597484987 | |
=3 |
≈
1.2580143 x 103638334640024 | |
3 |
etc.
This already leads to some fairly large numbers, but the hyperoperator sequence does not stop here.
Pentation, defined as iterated tetration, is represented by the “triple arrow”:
\begin{matrix} a\uparrow\uparrow\uparrowb=H5(a,b)=& \underbrace{a\uparrow\uparrow(a\uparrow\uparrow(...\uparrow\uparrowa))}\\ &bcopiesofa \end{matrix}
\begin{matrix} a\uparrow\uparrow\uparrow\uparrowb=H6(a,b)=& \underbrace{a\uparrow\uparrow\uparrow(a\uparrow\uparrow\uparrow(...\uparrow\uparrow\uparrowa))}\\ &bcopiesofa \end{matrix}
and so on. The general rule is that an
n
n-1
\begin{matrix} a \underbrace{\uparrow\uparrow...\uparrow}n b= \underbrace{a \underbrace{\uparrow...\uparrow}n-1 (a \underbrace{\uparrow...\uparrow}n-1 (... \underbrace{\uparrow...\uparrow}n-1 a))}bcopiesofa\end{matrix}
Examples:
3\uparrow\uparrow\uparrow2=3\uparrow\uparrow3=
33 | |
3 |
=327=7,625,597,484,987
\begin{matrix} 3\uparrow\uparrow\uparrow3=3\uparrow\uparrow(3\uparrow\uparrow3)=3\uparrow\uparrow(3\uparrow3\uparrow3)=& \underbrace{3\uparrow3\uparrow...\uparrow3}\\ &3\uparrow3\uparrow3copiesof3 \end{matrix} \begin{matrix} =&\underbrace{3\uparrow3\uparrow...\uparrow3}\\ &7,625,597,484,987copiesof3 \end{matrix} \begin{matrix} =&
| |||||||||||||||||||||||||
\underbrace{3 |
In expressions such as
ab
b
a
a\uparrowb
The superscript notation
ab
a\uparrowb
a\uparrownb
a\uparrow4b=a\uparrow\uparrow\uparrow\uparrowb
Attempting to write
a\uparrow\uparrowb
For example:
a\uparrow\uparrow4=a\uparrow(a\uparrow(a\uparrowa))=
| |||||
a |
If b is a variable (or is too large), the power tower might be written using dots and a note indicating the height of the tower.
a\uparrow\uparrowb=
| |||||||||
\underbrace{a |
Continuing with this notation,
a\uparrow\uparrow\uparrowb
a\uparrow\uparrow\uparrow4=a\uparrow\uparrow(a\uparrow\uparrow(a\uparrow\uparrowa))=
| |||||||||
\underbrace{a |
Again, if b is a variable or is too large, the stack might be written using dots and a note indicating its height.
a\uparrow\uparrow\uparrowb=\left.
| |||||||||
\underbrace{a |
Furthermore,
a\uparrow\uparrow\uparrow\uparrowb
a\uparrow\uparrow\uparrow\uparrow4=a\uparrow\uparrow\uparrow(a\uparrow\uparrow\uparrow(a\uparrow\uparrow\uparrowa))=\left.\left.\left.
| |||||||||
\underbrace{a |
And more generally:
a\uparrow\uparrow\uparrow\uparrowb=\underbrace{ \left.\left.\left.
| |||||||||
\underbrace{a |
This might be carried out indefinitely to represent
a\uparrownb
The Rudy Rucker notation
ba
a\uparrow\uparrowb={}ba
a\uparrow\uparrow\uparrowb=
| |||||||||||||||||||
\underbrace{ |
a}b
a\uparrow\uparrow\uparrow\uparrowb=\left.
| |||||||||||||||||||
\underbrace{ |
a} | |||||||||||||||||||||||||
|
a}}\right\}b
Finally, as an example, the fourth Ackermann number
4\uparrow44
| |||||||||||||||||||
\underbrace{ |
4} | |||||||||||||||||||||||||
|
|
4}}=
| |||||||||||||||||||
\underbrace{ |
4} | |||||||||||||||||||||||||
|
|
Some numbers are so large that multiple arrows of Knuth's up-arrow notation become too cumbersome; then an n-arrow operator
\uparrown
Some numbers are so large that even that notation is not sufficient. The Conway chained arrow notation can then be used: a chain of three elements is equivalent with the other notations, but a chain of four or more is even more powerful.
\begin{matrix} a\uparrownb&=&a[n+2]b&=&a\tob\ton\\ (Knuth)&&(hyperoperation)&&(Conway) \end{matrix}
6\uparrow\uparrow4
| |||||||||||||
\underbrace{6 |
6\uparrow\uparrow4
| |||||
6 |
646,656 | |
6 |
| |||||||||||||
\underbrace{6 |
10\uparrow(3 x 10\uparrow(3 x 10\uparrow15)+3)
\underbrace{100000...000}\underbrace{300000...00015}}
| |||||||
10 |
Even faster-growing functions can be categorized using an ordinal analysis called the fast-growing hierarchy. The fast-growing hierarchy uses successive function iteration and diagonalization to systematically create faster-growing functions from some base function
f(x)
f0(x)=x+1
f2(x)
f3(x)
f\omega(x)
f\omega(x)
f | |
\omega2 |
(x)
These functions are all computable. Even faster computable functions, such as the Goodstein sequence and the TREE sequence require the usage of large ordinals, may occur in certain combinatorical and proof-theoretic contexts. There exist functions which grow uncomputably fast, such as the Busy Beaver, whose very nature will be completely out of reach from any up-arrow, or even any ordinal-based analysis.
Without reference to hyperoperation the up-arrow operators can be formally defined by
a\uparrownb= \begin{cases} ab,&ifn=1;\\ 1,&ifn>1andb=0;\\ a\uparrown-1(a\uparrown(b-1)),&otherwise \end{cases}
a,b,n
a\ge0,n\ge1,b\ge0
(a\uparrow1b=a\uparrowb=ab)
(a\uparrow2b=a\uparrow\uparrowb)
(a\uparrow0b=a x b)
a\uparrownb= \begin{cases} a x b,&ifn=0;\\ 1,&ifn>0andb=0;\\ a\uparrown-1(a\uparrown(b-1)),&otherwise \end{cases}
a,b,n
a\ge0,n\ge0,b\ge0
Note, however, that Knuth did not define the "nil-arrow" (
\uparrow0
Hn(a,b)=a[n]b=a\uparrown-2bforn\ge0.
The up-arrow operation is a right-associative operation, that is,
a\uparrowb\uparrowc
a\uparrow(b\uparrowc)
(a\uparrowb)\uparrowc
Computing
0\uparrownb=Hn+2(0,b)=0[n+2]b
0, when n = 0 [3]
1, when n = 1 and b = 0 [4] [5]
0, when n = 1 and b > 0 [4] [5]
1, when n > 1 and b is even (including 0)
0, when n > 1 and b is odd
Computing
2\uparrownb
2b
1 | 2 | 3 | 4 | 5 | 6 | formula | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 4 | 8 | 16 | 32 | 64 | 2b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 2 | 4 | 16 | 65536 | 265{,536} ≈ 2.0 x 1019{,728} |
| 2\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 2 | 4 | 65536 | \begin{matrix}
| \begin{matrix}
| \begin{matrix}
| 2\uparrow\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 2 | 4 | \begin{matrix}
| \begin{matrix}
2}\\
| \begin{matrix}
2}\\
2}\\
| \begin{matrix}
2}\\
2}\\
2}\\
| 2\uparrow\uparrow\uparrow\uparrowb |
The table is the same as that of the Ackermann function, except for a shift in
n
b
We place the numbers
3b
1 | 2 | 3 | 4 | 5 | formula | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 9 | 27 | 81 | 243 | 3b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 3 | 27 | 7,625,597,484,987 | 37{,625{,}597{,}484{,}987} ≈ 1.3 x 103{,638{,}334{,}640{,}024} |
597{,}484{,}987}} | 3\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 3 | 7,625,597,484,987 | \begin{matrix}
| \begin{matrix}
| \begin{matrix}
| 3\uparrow\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 3 | \begin{matrix}
| \begin{matrix}
3}\\
| \begin{matrix}
3}\\
3}\\
| \begin{matrix}
3}\\
3}\\
3}\\
| 3\uparrow\uparrow\uparrow\uparrowb |
We place the numbers
4b
1 | 2 | 3 | 4 | 5 | formula | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 16 | 64 | 256 | 1024 | 4b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 4 | 256 | 4256 ≈ 1.34 x 10154 |
≈
|
| 4\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 4 |
≈
| \begin{matrix}
| \begin{matrix}
| \begin{matrix}
| 4\uparrow\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 4 | \begin{matrix}
| \begin{matrix}
4}\\
| \begin{matrix}
4}\\
4}\\
| \begin{matrix}
4}\\
4}\\
4}\\
| 4\uparrow\uparrow\uparrow\uparrowb |
We place the numbers
10b
1 | 2 | 3 | 4 | 5 | formula | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10 | 100 | 1,000 | 10,000 | 100,000 | 10b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 10 | 10,000,000,000 | 1010,000,000,000 |
|
| 10\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 10 | \begin{matrix}
| \begin{matrix}
| \begin{matrix}
| \begin{matrix}
| 10\uparrow\uparrow\uparrowb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 10 | \begin{matrix}
10}\\ 10copiesof10 \end{matrix} | \begin{matrix}
10}\\
10}\\ 10copiesof10 \end{matrix} | \begin{matrix}
10}\\
10}\\
10}\\ 10copiesof10 \end{matrix} | \begin{matrix}
10}\\
10}\\
10}\\
10}\\ 10copiesof10 \end{matrix} | 10\uparrow\uparrow\uparrow\uparrowb |
For 2 ≤ b ≤ 9 the numerical order of the numbers
10\uparrownb
\uparrow0