Knockoffs (statistics) explained
In statistics, the knockoff filter, or simply knockoffs, is a framework for variable selection. It was originally introduced for linear regression by Rina Barber and Emmanuel Candès,[1] and later generalized to other regression models in the random design setting.[2] Knockoffs has found application in many practical areas, notably in genome-wide association studies.[3]
Fixed-X knockoffs
Consider a linear regression model with response vector
and
feature matrix
, which is treated as deterministic
. A matrix
is said to be knockoffs of
if it does not depend on
and satisfies
for
. Barber and Candès showed that, equipped with a suitable feature importance statistic, fixed-X knockoffs can be used for variable selection while controlling the
false discovery rate (FDR).
Model-X knockoffs
Consider a general regression model with response vector
and random feature matrix
. A matrix
is said to be knockoffs of
if it is
conditionally independent of
given
and satisfies a subtle pairwise exchangeable condition: for any
, the joint distribution of the random matrix
does not change if its
th and
th columns are swapped, where
is the number of features. While it is less clear how to create model-X knockoffs compared to their fixed-X counterpart, various
algorithms have been proposed to construct knockoffs.
[4] [5] Once constructed, model-X knockoffs can be used for variable selection following the same procedure as fixed-X knockoffs and control the FDR.
Properties
The knockoffs
can be understood as negative controls. Informally speaking, knockoffs has the property that no method can statistically distinguish the original matrix from its knockoffs without looking at
. Mathematically, the exchangeability conditions translate to symmetry that allows for an estimation of the type I error (e.g., if one wishes to choose the FDR as the type I error rate, the false discovery proportion is estimated), which then leads to exact type I error control.
Model-X knockoffs provides valid type I error control regardless of the unknown conditional distribution of
given
, and it can work with black-box variable importance statistics, including the ones derived from complicated
machine learning methods. A most significant challenge of implementing model-X knockoffs is that it requires nontrivial knowledge on the distribution of
, which is usually high-dimensional. This knowledge can be gained with the help of unlabeled data.
External links
Notes and References
- Barber . Rina Foygel . Candès . Emmanuel J. . 2015 . Controlling the false discovery rate via knockoffs . Annals of Statistics . 43. 5 . 2055–2085.
- Candès. Emmanuel. Fan. Yingying. Janson. Lucas. Lv. Jinchi. 2018. Panning for gold: model-X knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society . Series B (methodological) . Wiley Online Library. 80. 3. 551–577. 1610.02351.
- Sesia. Matteo. Sabatti. Chiara. Chiara Sabatti. Candès. Emmanuel. Gene hunting with hidden Markov model knockoffs. Biometrika. 106. 1. 1–18. 2019.
- Bates. Stephen. Candès. Emmanuel. Janson. Lucas. Wang. Wenshuo. Metropolized knockoff sampling. Journal of the American Statistical Association. 2020.
- Huang. Dongming. Janson. Lucas. Relaxing the assumptions of knockoffs by conditioning. Annals of Statistics. 2020.