Barrier option explained

A barrier option is an option whose payoff is conditional upon the underlying asset's price breaching a barrier level during the option's lifetime.

Types

Barrier options are path-dependent exotics that are similar in some ways to ordinary options. You can call or put in American, Bermudan, or European exercise style. But they become activated (or extinguished) only if the underlying breaches a predetermined level (the barrier).

"In" options only become active in the event that a predetermined knock-in barrier price is breached:

  1. If the barrier price is far from being breached, the knock-in option will be worth slightly more than zero.
  2. If the barrier price is close to being breached, the knock-in option will be worth slightly less than the corresponding vanilla option.
  3. If the barrier price has been breached, the knock-in option will trade at the exact same value as the corresponding vanilla option.

"Out" options start their lives active and become null and void in the event that a certain knock-out barrier price is breached:

  1. If the barrier price is far from being breached, the knock-out option will be slightly less than the corresponding vanilla option.
  2. If the barrier price is close to being breached, the knock-out option will be worth slightly more than zero.
  3. If the barrier price has been breached, the knock-out option will trade at the exact value of zero.

Some variants of "Out" options compensate the owner for the knock-out by paying a cash fraction of the premium at the time of the breach.

The four main types of barrier options are:

For example, a European call option may be written on an underlying with spot price of $100 and a knockout barrier of $120. This option behaves in every way like a vanilla European call, except if the spot price ever moves above $120, the option "knocks out" and the contract is null and void. Note that the option does not reactivate if the spot price falls below $120 again.

By in-out parity, we mean that the combination of one "in" and one "out" barrier option with the same strikes and expirations yields the price of the corresponding vanilla option:

C=Cin+Cout

. Note that before the knock-in/out event, both options have positive value, and hence both are strictly valued below the corresponding vanilla option. After the knock-in/out event, the knock-out option is worthless and the knock-in option's value coincides with that of the corresponding vanilla option. At maturity, exactly one of the two will pay off identically to the corresponding vanilla option, which of the two that depends on whether the knock-in/out event has occurred before maturity.

Barrier events

A barrier event occurs when the underlying crosses the barrier level. While it seems straightforward to define a barrier event as "underlying trades at or above a given level," in reality it's not so simple. What if the underlying only trades at the level for a single trade? How big would that trade have to be? Would it have to be on an exchange or could it be between private parties? When barrier options were first introduced to options markets, many banks had legal trouble resulting from a mismatched understanding with their counterparties regarding exactly what constituted a barrier event.

Variations

Barrier options are sometimes accompanied by a rebate, which is a payoff to the option holder in case of a barrier event. Rebates can either be paid at the time of the event or at expiration.

Barrier options can have either American, Bermudan or European exercise style.

Valuation

The valuation of barrier options can be tricky, because unlike other simpler options they are path-dependent  - that is, the value of the option at any time depends not just on the underlying at that point, but also on the path taken by the underlying (since, if it has crossed the barrier, a barrier event has occurred). Although the classical Black–Scholes approach does not directly apply, several more complex methods can be used:

References

  1. Derman. Emanuel. Ergener. Deniz. Kani. Iraj. Static Options Replication. The Journal of Derivatives. 31 May 1995. 2. 4. 78–95. 10.3905/jod.1995.407927.