In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of continued fractions to higher dimensions.
Let
styleC
styleRn
styleC
styleC\capZn
Suppose
style\alpha>0
styleR2
style\{(1,\alpha),(1,0)\}
style\{(1,\alpha),(0,1)\}
styleZ2.
style\alpha
Suppose
styleC
style(ai)
styleRn
styleC=\{\sumiλiai:(\foralli) λi\geq0\}
style(wi)
styleC=\{x:(\foralli) \langlewi,x\rangle\geq0\}
styleD(x)
stylex
styleH(x)
stylex
Call the vector
stylex\inRn
styleH(x)\capQn=\{0\}
styleC
styleai
stylewi
The boundary
styleV
styleV
style\Gammae(V)
styleV
styleV
style\Gammaf(V)
style(n-1)
styleV
style(n-2)
Both of these graphs are structurally related to the directed graph
style\Upsilonn
styleGLn(Q)
styleA
styleB
styleA-1B
styleUW
U=\left(\begin{array}{cccc}1& … &0&c1\ \vdots&\ddots&\vdots&\vdots\ 0& … &1&cn-1\ 0& … &0&cn\end{array}\right)
(with
styleci\inQ
stylecn ≠ 0
styleW
styleV
style\Gammae(V)
style\Gammaf(V)
style\Upsilonn
style(x0,x1,\ldots)
style\Gammae(V)
style(A0,A1,\ldots)
style\Upsilonn
stylexk=Ak(e)
stylee
style(1,\ldots,1)\inRn
style(\sigma0,\sigma1,\ldots)
style\Gammaf(V)
style(A0,A1,\ldots)
style\Upsilonn
style\sigmak=Ak(\Delta)
style\Delta
style(n-1)
styleRn
Lagrange proved that for an irrational real number
style\alpha
style\alpha
style\alpha
Let
styleK\subseteqR
stylen
style\alphai:K\toR
stylen
styleK
styleC
styleK
styleC=\{x\inRn:(\foralli) \alphai(\omega1)x1+\ldots+\alphai(\omegan)xn\geq0\}
style\omega1,\ldots,\omegan
styleK
styleQ
Given a path
style(A0,A1,\ldots)
style\Upsilonn
styleRk=Ak+1
-1 | |
A | |
k |
stylem
styleRk+qm=Rk
stylek,q\geq0
styleAm
-1 | |
A | |
0 |
style\Gammae(V)
style\Gammaf(V)
The generalized Lagrange theorem states that for an irrational simplicial cone
styleC\subseteqRn
style(ai)
style(wi)
styleV
styleC
stylen
styleai
stylex0,x1,\ldots
style\Gammae(V)
stylexk
styleD(ai)
stylewi
style\sigma0,\sigma1,\ldots
style\Gammaf(V)
style\sigmak
styleH(wi)
Take
stylen=2
styleK=Q(\sqrt{2})
style\{(x,y):x\geq0,\verty\vert\leqx/\sqrt{2}\}
styleK
style(pk,\pmqk)
stylepk/qk
style\sqrt{2}
style(xk)
style(1,0)
style((1,0),(3,2),(17,12),(99,70),\ldots)
style\sigmak
stylexk
stylexk+1
style\bar{x}k
style\bar{\sigma}k
stylexk
style\sigmak
stylex
styleT=\left(\begin{array}{cc}3&4\ 2&3\end{array}\right)
stylexk+1=Txk
styleR=\left(\begin{array}{cc}6&1\ -1&0\end{array}\right)=\left(\begin{array}{cc}1&6\ 0&-1\end{array}\right)\left(\begin{array}{cc}0&1\ 1&0\end{array}\right)
Let
styleMe=\left(\begin{array}{cc}
12 | |
& |
12 | - | ||
|
14 | |
\end{array} |
\right)
style\bar{M}e=\left(\begin{array}{cc}
12 | |
& |
12 | |||
|
14 | |
\end{array} |
\right)
styleMf=\left(\begin{array}{cc}3&1\ 2&0\end{array}\right)
style\bar{M}f=\left(\begin{array}{cc}3&1\ -2&0\end{array}\right)
style(MeRk)
style(\bar{M}eRk)
style\Upsilon2
styleMeR
-1 | |
M | |
e |
=T
style\bar{M}eR
-1 | |
\bar{M} | |
e |
=T-1
stylexk=MeRk(e)
style\bar{x}k=\bar{M}eRk(e)
style(MfRk)
style(\bar{M}fRk)
style\Upsilon2
styleMfR
-1 | |
M | |
f |
=T
style\bar{M}fR
-1 | |
\bar{M} | |
f |
=T-1
style\sigmak=MfRk(\Delta)
style\bar{\sigma}k=\bar{M}fRk(\Delta)
A real number
style\alpha>0
style\{q(p\alpha-q):p,q\inZ,q>0\}
Given a simplicial cone
styleC=\{x:(\foralli) \langlewi,x\rangle\geq0\}
styleRn
style\langlewi,wi\rangle=1
styleC
styleN(C)=inf\{\prodi\langlewi,x\rangle:x\inZn\capC\setminus\{0\}\}
Given vectors
stylev1,\ldots,vm\inZn
style[v1,\ldots,vm]=
\sum | |
i1< … <in |
\vert
\det(v | |
i1 |
…
v | |
in |
)\vert
style\{\sumiλivi:(\foralli) 0\leqλi\leq1\}
Let
styleV
styleC
stylex
style\Gammae(V)
style[x]=[v1,\ldots,vm]
stylev1,\ldots,vm
styleZn
stylex
style\sigma
style\Gammaf(V)
style[\sigma]=[v1,\ldots,vm]
stylev1,\ldots,vm
style\sigma
Then
styleN(C)>0
style\{[x]:x\in\Gammae(V)\}
style\{[\sigma]:\sigma\in\Gammaf(V)\}
The quantities
style[x]
style[\sigma]
style\{(1,\alpha),(1,0)\}
style\alpha