In mathematics, the lines of a 3-dimensional projective space, S, can be viewed as points of a 5-dimensional projective space, T. In that 5-space, the points that represent each line in S lie on a quadric, Q known as the Klein quadric.
If the underlying vector space of S is the 4-dimensional vector space V, then T has as the underlying vector space the 6-dimensional exterior square Λ2V of V. The line coordinates obtained this way are known as Plücker coordinates.
These Plücker coordinates satisfy the quadratic relation
p12p34+p13p42+p14p23=0
pij=uivj-ujvi
The 3-space, S, can be reconstructed again from the quadric, Q: the planes contained in Q fall into two equivalence classes, where planes in the same class meet in a point, and planes in different classes meet in a line or in the empty set. Let these classes be C and C′. The geometry of S is retrieved as follows:
The fact that the geometries of S and Q are isomorphic can be explained by the isomorphism of the Dynkin diagrams A3 and D3.