Kim Lewis (academic) explained

Kim Lewis
Nationality:American
Occupation:Researcher, author and academic
Education:B.S., Biology (1976)
Ph.D., Biochemistry (1980)
Alma Mater:Moscow University
Workplaces:Northeastern University

Kim Lewis is an American researcher, author and academic. He is a University Distinguished Professor and the director of Antimicrobial Discovery Center at Northeastern University.

Lewis' research is focused on antimicrobial tolerance which limits the ability of antibiotics to eradicate an infection; and on antimicrobial drug discovery.[1]

He is a fellow of the American Association for the Advancement of Science,[2] and of the American Academy of Microbiology.[3]

Education

Lewis received a B.S. in biology in 1976 and a Ph.D. in biochemistry in 1980, both from Moscow University.[4]

Career

In 1976, Lewis joined Moscow University as a researcher. He continued working there until 1984, when he applied to emigrate to the USA. He moved to the United States in 1987, where he joined University of Wisconsin as a research associate. In 1988, he left University of Wisconsin and joined MIT as an assistant professor. He left MIT to join University of Maryland, Baltimore in 1994.

Lewis joined Tufts University as a Research Associate Professor in 1997 and taught there until 2001, when he joined Northeastern University. In 2004, he became a distinguished research fellow, and in 2011, a distinguished professor at Northeastern University.[5]

Research and work

Lewis' research is focused on antimicrobial tolerance which limits the ability of antibiotics to eradicate an infection; and on antimicrobial drug discovery. He discovered that biofilm recalcitrance to treatment is due to the presence of dormant persister cells tolerant to killing by antibiotics. His research further showed that persisters are cells with low level of ATP, which drops as a result of stochastic variation in expression of energy producing components.[6] [7] He discovered that acyldepsipeptide (ADEP) kills persisters in S. aureus and other bacteria by activating the Clp protease, forcing the cell to self-digest.[8] A new antimicrobial, lassomycin, that his team discovered from an uncultured bacterium, kills M. tuberculosis, including persister cells, by activating the C1 ATPase subunit of the ClpC1P1P2 protease, causing ATP depletion and death.[9]

In early 2000s, Lewis began working in collaboration with Slava Epstein to solve the problem that uncultured bacteria could not be grown in vitro. They reasoned uncultured bacteria will grow in their natural environment, and developed a diffusion chamber where they are incubated in their natural environment. In a paper published in Science in 2002, they reported growth of uncultured bacteria in a diffusion chamber.[10] [11] [12]

Lewis has been involved in antimicrobial drug discovery for over a decade. They developed methods to mine uncultured bacteria for novel compounds. Of especial interest is teixobactin, a novel cell wall acting antibiotic that binds to different precursors of cell wall polymers. This is the first antibiotic that acts without detectable resistance.[13] [14] The paper describing the discovery of teixobactin was the most discussed publication of that year, according to Altmetric.[15]

More recently, Lewis and his group refocused their program on discovery of compounds acting against Gram negative pathogens, and discovered a new class of antibiotics, darobactins, inhibitors of BamA, an essential protein of the outer membrane.[16] [17]

Awards and honors

Books

External links

Notes and References

  1. Web site: Kim Lewis - Google Scholar.
  2. Web site: AAAS Honors Accomplished Scientists as 2018 Elected Fellows.
  3. Web site: This Solver of Scientific Paradoxes Has Been Named a Fellow of the American Association For the Advancement of Science.. 27 November 2018 .
  4. Web site: Kim Lewis.
  5. Web site: Kim Lewis - CV.
  6. 23471410 . 2013 . Keren . I. . Wu . Y. . Inocencio . J. . Mulcahy . L. R. . Lewis . K. . Killing by bactericidal antibiotics does not depend on reactive oxygen species . Science . 339 . 6124 . 1213–1216 . 10.1126/science.1232688 . 24746892 .
  7. PMC7502270. 2015. 7502270. Schumacher. M. A.. Balani. P.. Min. J.. Chinnam. N. B.. Hansen. S.. Vulić. M.. Lewis. K.. Brennan. R. G.. Nature. 524. 7563. 59–64. 10.1038/nature14662. 26222023.
  8. PMC4031760. 2013. 4031760. Conlon. B.. Nakayasu. E.. Fleck. L.. Lafleur. M.. Isabella. V.. Coleman. K.. Leonard. S.. Smith. R.. Adkins. J.. Lewis. K.. Nature. 503. 7476. 365–370. 10.1038/nature12790. 24226776.
  9. PMC4060151. 2014. 4060151. Gavrish. E.. Sit. C. S.. Cao. S.. Kandror. O.. Spoering. A.. Peoples. A.. Ling. L.. Fetterman. A.. Hughes. D.. Bissell. A.. Torrey. H.. Akopian. T.. Mueller. A.. Epstein. S.. Goldberg. A.. Clardy. J.. Lewis. K.. Chemistry & Biology. 21. 4. 509–518. 10.1016/j.chembiol.2014.01.014. 24684906.
  10. 12004133 . 2002 . Kaeberlein . T. . Lewis . K. . Epstein . S. S. . Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment . Science . 296 . 5570 . 1127–1129 . 10.1126/science.1070633 . 28437864 .
  11. Siderophores from Neighboring Organisms Promote the Growth of Uncultured Bacteria. 2010 . 2895992 . d'Onofrio . A. . Crawford . J. M. . Stewart . E. J. . Witt . K. . Gavrish . E. . Epstein . S. . Clardy . J. . Lewis . K. . Chemistry & Biology . 17 . 3 . 254–264 . 10.1016/j.chembiol.2010.02.010 . 20338517 .
  12. Khatchadourian. Raffi. June 13, 2016. The Unseen. The New Yorker.
  13. A new antibiotic kills pathogens without detectable resistance. 2015 . 7414797 . Ling . L. L. . Schneider . T. . Peoples . A. J. . Spoering . A. L. . Engels . I. . Conlon . B. P. . Mueller . A. . Schäberle . T. F. . Hughes . D. E. . Epstein . S. . Jones . M. . Lazarides . L. . Steadman . V. A. . Cohen . D. R. . Felix . C. R. . Fetterman . K. A. . Millett . W. P. . Nitti . A. G. . Zullo . A. M. . Chen . C. . Lewis . K. . Nature . 517 . 7535 . 455–459 . 10.1038/nature14098 . 25561178 .
  14. 10.1038/s41586-022-05019-y. Nature. August 2022. 608. 7922. 390–396. 10.1038/s41586-022-05019-y. Shukla. Rhythm. Lavore. Francesca. Maity. Sourav. Derks. Maik G. N.. Jones. Chelsea R.. Vermeulen. Bram J. A.. Melcrová. Adéla. Morris. Michael A.. Becker. Lea Marie. Wang. Xiaoqi. Kumar. Raj. Medeiros-Silva. João. van Beekveld RAM. Bonvin AMJJ. Lorent. Joseph H.. Lelli. Moreno. Nowick. James S.. MacGillavry. Harold D.. Peoples. Aaron J.. Spoering. Amy L.. Ling. Losee L.. Hughes. Dallas E.. Roos. Wouter H.. Breukink. Eefjan. Lewis. Kim. Weingarth. Markus. 35922513. 9365693.
  15. A new antibiotic kills pathogens without detectable resistance. 2015 . 7414797 . Ling . L. L. . Schneider . T. . Peoples . A. J. . Spoering . A. L. . Engels . I. . Conlon . B. P. . Mueller . A. . Schäberle . T. F. . Hughes . D. E. . Epstein . S. . Jones . M. . Lazarides . L. . Steadman . V. A. . Cohen . D. R. . Felix . C. R. . Fetterman . K. A. . Millett . W. P. . Nitti . A. G. . Zullo . A. M. . Chen . C. . Lewis . K. . Nature . 517 . 7535 . 455–459 . 10.1038/nature14098 . 25561178 .
  16. A new antibiotic selectively kills Gram-negative pathogens. 2019. 7188312. Imai. Y.. Meyer. K. J.. Iinishi. A.. Favre-Godal. Q.. Green. R.. Manuse. S.. Caboni. M.. Mori. M.. Niles. S.. Ghiglieri. M.. Honrao. C.. Ma. X.. Guo. J. J.. Makriyannis. A.. Linares-Otoya. L.. Böhringer. N.. Wuisan. Z. G.. Kaur. H.. Wu. R.. Mateus. A.. Typas. A.. Savitski. M. M.. Espinoza. J. L.. O'Rourke. A.. Nelson. K. E.. Hiller. S.. Noinaj. N.. Schäberle. T. F.. d'Onofrio. A.. Lewis. K.. Nature. 576. 7787. 459–464. 10.1038/s41586-019-1791-1. 31747680.
  17. Mutasynthetic Production and Antimicrobial Characterization of Darobactin Analogs. 2021. 8694152. Böhringer. N.. Green. R.. Liu. Y.. Mettal. U.. Marner. M.. Modaresi. S. M.. Jakob. R. P.. Wuisan. Z. G.. Maier. T.. Iinishi. A.. Hiller. S.. Lewis. K.. Schäberle. T. F.. Microbiology Spectrum. 9. 3. e01535-21. 10.1128/spectrum.01535-21. 34937193.
  18. Web site: The Faculty.
  19. Web site: Six Northeastern Professors Named to List of Highly Cited Researchers Around The Globe. 9 January 2019 .