The Keulegan–Carpenter number KC is defined as:[1]
KC=
VT | |
L |
,
where:
The Keulegan–Carpenter number is named after Garbis H. Keulegan (1890–1989) and Lloyd H. Carpenter.
A closely related parameter, also often used for sediment transport under water waves, is the displacement parameter δ:[1]
\delta=
A | |
L |
,
with A the excursion amplitude of fluid particles in oscillatory flow and L a characteristic diameter of the sediment material. For sinusoidal motion of the fluid, A is related to V and T as A = VT/(2π), and:
KC=2\pi\delta.
The Keulegan–Carpenter number can be directly related to the Navier–Stokes equations, by looking at characteristic scales for the acceleration terms:
(u ⋅ \nabla)u\sim
V2 | |
L |
,
\partialu | |
\partialt |
\sim
V | |
T |
.
A somewhat similar parameter is the Strouhal number, in form equal to the reciprocal of the Keulegan–Carpenter number. The Strouhal number gives the vortex shedding frequency resulting from placing an object in a steady flow, so it describes the flow unsteadiness as a result of an instability of the flow downstream of the object. Conversely, the Keulegan–Carpenter number is related to the oscillation frequency of an unsteady flow into which the object is placed.