Λ
In signature and in natural units of
\rmG=M=c=ke=1
g\rm=\rm-
3 [a2 \sin2\theta\left(a2 Λ \cos2\theta+3\right)+a2\left(Λ r2-3\right)+Λ r4-3 r2+6 r-3\mho2] | |
\left(a2 Λ+3\right)2\left(a2\cos2\theta+r2\right) |
g\rm=\rm-
a2 \cos2\theta+r2 | |||||||||
|
g\rm=\rm-
3\left(a2 \cos2\theta+r2\right) | |
a2 Λ \cos2\theta+3 |
g\rm=\rm
| ||||||
}{-\left(a |
2 Λ+3\right)2\left(a2\cos2\theta+r2\right)}
g\rm=\rm
3 a \sin2\theta [a2 Λ\left(a2+r2\right)\cos2\theta+a2 Λ r2+Λ r4+6 r-3 \mho2] | |
\left(a2 Λ+3\right)2\left(a2 \cos2\theta+r2\right) |
with all the other metric tensor components
g\mu=0
\rma
\rm\mho
\rmΛ=3H2
\rmH
\rmA\mu=\left\{
3 r \mho | |
\left(a2 Λ+3\right)\left(a2 \cos2\theta+r2\right) |
, 0, 0, -
3 a r \mho \sin2\theta | |
\left(a2 Λ+3\right)\left(a2 \cos2\theta+r2\right) |
\right\}
The frame-dragging angular velocity is
\omega=
\rmd\phi | |
\rmdt |
=-
g\rm | |
g\rm |
=\rm
a [a2 Λ\left(a2+r2\right)\cos2\theta+a2 Λ r2+6 r+Λ r4-3 \mho2] | |
a2 \sin2\theta [a2\left(Λ r2-3\right)+6 r+Λ r4-3 r2-3 \mho2]+a2 Λ \left(a2+r2\right)2\cos2\theta+3 \left(a2+r2\right)2 |
and the local frame-dragging velocity relative to constant
\rm\{r,\theta,\phi\}
\nu=\sqrt{g\rm g\rm
The escape velocity (the speed of light at the horizons) relative to the local corotating zero-angular momentum observer is
{\rmv}=\sqrt{1-1/g\rm}=\rm\sqrt{
3\left(a2Λ\cos2\theta+3\right)\left(a2+r2-a2\sin2\theta\right)2\left[a2\left(Λr2-3\right)+Λr4-3r2+6r-3\mho2\right] | |
\left(a2Λ+3\right)2\left(a2\cos2\theta+r2\right)\{a2Λ\left(a2+r2\right)2\cos2\theta+3\left(a2+r2\right)2+a2\sin2\theta\left[a2\left(Λr2-3\right)+Λr4-3r2+6r-3\mho2\right]\ |
}+1}
The conserved quantities in the equations of motion
{\rm\ddot{x}\mu=-\sum\alpha, (
\mu | ||
\Gamma | ||
\alpha\beta |
x |
\alpha
x |
\beta+q {\rmF}\mu {\rm
x |
where
\rm
x |
\rmq
\rmF
\rm{ F}\mu=
\partialA\mu | - | |
\partialx\nu |
\partialA\nu | |
\partialx\mu |
are the total energy
{\rmE=-pt}=g\rm{\rm
t |
and the covariant axial angular momentum
{\rmLz=p\phi
\tau
\rm
x |
=dx/d\tau, \ddot{x}=d2x/d\tau2
To get
g\rm=0
\rmdt=du-
dr\left(a2 Λ/3+1\right)\left(a2+r2\right) | |
\left(a2+r2\right)\left(1-Λ r2/3\right)-2 r+\mho2 |
\rmd\phi=d\varphi-
a dr\left(a2 Λ/3+1\right) | |
\left(a2+r2\right)\left(1-Λ r2/3\right)-2 r+\mho2 |
and get the metric coefficients
g\rm=\rm-
3 | |
a2 Λ+3 |
g\rm=\rm
3 a\sin2\theta | |
a2 Λ+3 |
g\rm=g\rm , g\theta=g\theta , g\rm=g\rm , g\rm=g\rm
and all the other
g\mu=0
\rmA\mu=\left\{
3 r \mho | , | |
\left(a2 Λ+3\right)\left(a2\cos2\theta+r2\right) |
3 r \mho | |
a2\left(Λ r2-3\right)+6 r+Λ r4-3\left(r2+\mho2\right) |
, 0, -
3 a r \mho\sin2\theta | |
\left(a2 Λ+3\right)\left(a2\cos2\theta+r2\right) |
\right\}
Defining
\rm\bar{t}=u-r
45\circ
\{\rm\bar{t}, r\}
The horizons are at
g\rm=0
g\rm||g\rm=0
\rmr
\theta
This gives 3 positive solutions each (including the black hole's inner and outer horizons and ergospheres as well as the cosmic ones) and a negative solution for the space at
\rmr<0
With a negative
Λ
In the Nariai limit[10] the black hole's outer horizon and ergosphere coincide with the cosmic ones (in the Schwarzschild–de–Sitter metric to which the KNdS reduces with
\rma=\mho=0
Λ=1/9
The Ricci scalar for the KNdS metric is
\rmR=-4Λ
\rmK=\{220a12Λ2\cos(6\theta)+66a12Λ2\cos(8\theta)+12a12Λ2\cos(10\theta)+a12Λ2\cos(12\theta)+
\rm462a12Λ2+1080a10Λ2r2\cos(6\theta)+240a10Λ2r2\cos(8\theta)+24a10Λ2r2\cos(10\theta)+
\rm3024a10Λ2r2+1920a8Λ2r4\cos(6\theta)+240a8Λ2r4\cos(8\theta)+8400a8Λ2r4-
\rm1152a6\cos(6\theta)-11520a6+1280a6Λ2r6\cos(6\theta)+12800a6Λ2r6+207360a4r2-
\rm138240a4r\mho2+11520a4Λ2r8+16128a4\mho4-276480a2r4+368640a2r3\mho2+
\rm6144a2Λ2r10-104448a2r2\mho4+3a4\cos(4\theta)[165a8Λ2+960a6Λ2r2+2240a4Λ2r4-
\rm256a2(9-10Λ2r6)+256(90r2-60r\mho2+5Λ2r8+7\mho4)]+24a2\cos(2\theta)[33a10Λ2+
\rm210a8Λ2r2+560a6Λ2r4-80a4(9-10Λ2r6)+128a2(90r2-60r\mho2+5Λ2r8+
\rm7\mho4)+256r2(-45r2+60r\mho2+Λ2r8-17\mho4)]+36864r6-73728r5\mho2+
\rm2048Λ2r12+43008r4\mho4\} ÷ \{12[a2\cos(2\theta)+a2+2r2]6\}.