Kerr–Newman–de–Sitter metric explained

Λ

.

In signature and in natural units of

\rmG=M=c=ke=1

the KNdS metric is[3] [4] [5] [6]

g\rm=\rm-

3 [a2\sin2\theta\left(a2 Λ \cos2\theta+3\right)+a2\left(Λ r2-3\right)r4-3r2+6r-3\mho2]
\left(a2 Λ+3\right)2\left(a2\cos2\theta+r2\right)

g\rm=\rm-

a2\cos2\theta+r2
2+r
\left(a2\right)
\left(1-Λ r2
3
\right)-2r+\mho2

g\rm=\rm-

3\left(a2\cos2\theta+r2\right)
a2 Λ \cos2\theta+3

g\rm=\rm

9\{
1
3
\left(a2+r2\right)2\sin2\theta\left(a2 Λ\cos2\theta+3\right)-a2\sin4\theta[\left(a2+r2\right)\left(1-Λr2/3\right)-2r+\mho2]\
}{-\left(a

2 Λ+3\right)2\left(a2\cos2\theta+r2\right)}

g\rm=\rm

3 a\sin2\theta[a2 Λ\left(a2+r2\right)\cos2\theta+a2 Λ r2+Λr4+6r-3 \mho2]
\left(a2 Λ+3\right)2\left(a2\cos2\theta+r2\right)

with all the other metric tensor components

g\mu=0

, where

\rma

is the black hole's spin parameter,

\rm\mho

its electric charge, and

\rmΛ=3H2

[7] the cosmological constant with

\rmH

as the time-independent Hubble parameter. The electromagnetic 4-potential is

\rmA\mu=\left\{

3 r\mho
\left(a2 Λ+3\right)\left(a2\cos2\theta+r2\right)

, 0, 0, -

3 ar\mho\sin2\theta
\left(a2 Λ+3\right)\left(a2\cos2\theta+r2\right)

\right\}

The frame-dragging angular velocity is

\omega=

\rmd\phi
\rmdt

=-

g\rm
g\rm

=\rm

a[a2 Λ\left(a2+r2\right)\cos2\theta+a2 Λ r2+6r+Λ r4-3\mho2]
a2\sin2\theta[a2\left(Λ r2-3\right)+6r+Λ r4-3r2-3\mho2]+a2 Λ \left(a2+r2\right)2\cos2\theta+3 \left(a2+r2\right)2

and the local frame-dragging velocity relative to constant

\rm\{r,\theta,\phi\}

positions (the speed of light at the ergosphere)

\nu=\sqrt{g\rmg\rm

} = \rm \sqrt

The escape velocity (the speed of light at the horizons) relative to the local corotating zero-angular momentum observer is

{\rmv}=\sqrt{1-1/g\rm}=\rm\sqrt{

3\left(a2Λ\cos2\theta+3\right)\left(a2+r2-a2\sin2\theta\right)2\left[a2\left(Λr2-3\right)r4-3r2+6r-3\mho2\right]
\left(a2Λ+3\right)2\left(a2\cos2\theta+r2\right)\{a2Λ\left(a2+r2\right)2\cos2\theta+3\left(a2+r2\right)2+a2\sin2\theta\left[a2\left(Λr2-3\right)r4-3r2+6r-3\mho2\right]\

}+1}

The conserved quantities in the equations of motion

{\rm\ddot{x}\mu=-\sum\alpha,(

\mu
\Gamma
\alpha\beta
x

\alpha

x

\beta+q{\rmF}\mu{\rm

x
}^} \ g_)

where

\rm

x
is the four velocity,

\rmq

is the test particle's specific charge and

\rmF

the Maxwell–Faraday tensor

\rm{F}\mu=

\partialA\mu-
\partialx\nu
\partialA\nu
\partialx\mu

are the total energy

{\rmE=-pt}=g\rm{\rm

t
}+g_ + \rm q \ A_

and the covariant axial angular momentum

{\rmLz=p\phi

}=-g_ -g_ - \rm q \ A_

\tau

or the photon's affine parameter, so

\rm

x

=dx/d\tau,\ddot{x}=d2x/d\tau2

.

To get

g\rm=0

coordinates we apply the transformation

\rmdt=du-

dr\left(a2 Λ/3+1\right)\left(a2+r2\right)
\left(a2+r2\right)\left(1-Λ r2/3\right)-2 r+\mho2

\rmd\phi=d\varphi-

adr\left(a2 Λ/3+1\right)
\left(a2+r2\right)\left(1-Λ r2/3\right)-2 r+\mho2

and get the metric coefficients

g\rm=\rm-

3
a2 Λ+3

g\rm=\rm

3 a\sin2\theta
a2 Λ+3

g\rm=g\rm,  g\theta=g\theta,  g\rm=g\rm,  g\rm=g\rm

and all the other

g\mu=0

, with the electromagnetic vector potential

\rmA\mu=\left\{

3 r\mho,
\left(a2 Λ+3\right)\left(a2\cos2\theta+r2\right)
3 r\mho
a2\left(Λ r2-3\right)+6r+Λ r4-3\left(r2+\mho2\right)

, 0, -

3 ar\mho\sin2\theta
\left(a2 Λ+3\right)\left(a2\cos2\theta+r2\right)

\right\}

Defining

\rm\bar{t}=u-r

ingoing lightlike worldlines give a

45\circ

light cone on a

\{\rm\bar{t},r\}

spacetime diagram.

The horizons are at

g\rm=0

and the ergospheres at

g\rm||g\rm=0

. This can be solved numerically or analytically. Like in the Kerr and Kerr–Newman metrics, the horizons have constant Boyer-Lindquist

\rmr

, while the ergospheres' radii also depend on the polar angle

\theta

.

This gives 3 positive solutions each (including the black hole's inner and outer horizons and ergospheres as well as the cosmic ones) and a negative solution for the space at

\rmr<0

in the antiverse[8] [9] behind the ring singularity, which is part of the probably unphysical extended solution of the metric.

With a negative

Λ

(the Anti–de–Sitter variant with an attractive cosmological constant), there are no cosmic horizon and ergosphere, only the black hole-related ones.

In the Nariai limit[10] the black hole's outer horizon and ergosphere coincide with the cosmic ones (in the Schwarzschild–de–Sitter metric to which the KNdS reduces with

\rma=\mho=0

that would be the case when

Λ=1/9

).

The Ricci scalar for the KNdS metric is

\rmR=-4Λ

, and the Kretschmann scalar is

\rmK=\{220a12Λ2\cos(6\theta)+66a12Λ2\cos(8\theta)+12a12Λ2\cos(10\theta)+a12Λ2\cos(12\theta)+

\rm462a12Λ2+1080a10Λ2r2\cos(6\theta)+240a10Λ2r2\cos(8\theta)+24a10Λ2r2\cos(10\theta)+

\rm3024a10Λ2r2+1920a8Λ2r4\cos(6\theta)+240a8Λ2r4\cos(8\theta)+8400a8Λ2r4-

\rm1152a6\cos(6\theta)-11520a6+1280a6Λ2r6\cos(6\theta)+12800a6Λ2r6+207360a4r2-

\rm138240a4r\mho2+11520a4Λ2r8+16128a4\mho4-276480a2r4+368640a2r3\mho2+

\rm6144a2Λ2r10-104448a2r2\mho4+3a4\cos(4\theta)[165a8Λ2+960a6Λ2r2+2240a4Λ2r4-

\rm256a2(9-10Λ2r6)+256(90r2-60r\mho2+5Λ2r8+7\mho4)]+24a2\cos(2\theta)[33a10Λ2+

\rm210a8Λ2r2+560a6Λ2r4-80a4(9-10Λ2r6)+128a2(90r2-60r\mho2+5Λ2r8+

\rm7\mho4)+256r2(-45r2+60r\mho2+Λ2r8-17\mho4)]+36864r6-73728r5\mho2+

\rm2048Λ2r12+43008r4\mho4\} ÷ \{12[a2\cos(2\theta)+a2+2r2]6\}.

See also

Notes and References

  1. Stuchlik. Bao. Østgaard . Hledik. Kerr-Newman-de Sitter black holes with a restricted repulsive barrier of equatorial photon motion. Physical Review D. 2008 . 58 . 084003. 10.1088/0264-9381/17/21/312. 0803.2539 . 250888923 .
  2. Griffiths. Podolsky. Exact spacetimes in Einstein's General Relativity. Cambridge University Press, Cambridge Monographs in Mathematical Physics. 2009 . 10.1017/CBO9780511635397. 9780521889278 .
  3. Garnier. Arthur. Motion equations in a Kerr-Newman-de Sitter spacetime. Classical and Quantum Gravity. 2023 . 40 . 13 . 10.1088/1361-6382/accbfe. 2307.04073. 258085066 .
  4. Kraniotis. Gravitational lensing and frame-dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de Sitter black hole spacetimes. General Relativity and Gravitation. 2014 . 46 . 11 . 1818 . 10.1007/s10714-014-1818-8. 1401.7118 . 2014GReGr..46.1818K . 125791608 .
  5. Bhattacharya. Kerr-de Sitter spacetime, Penrose process and the generalized area theorem. Physical Review D. 2018 . 97 . 8 . 084049 . 10.1103/PhysRevD.97.084049. 1710.00997 . 2018PhRvD..97h4049B . 119187422 .
  6. Stuchlik. Bao. Østgaard. Null Hypersurfaces in Kerr-Newman-AdS Black Hole and Super-Entropic Black Hole Spacetimes. Classical and Quantum Gravity. 2021 . 38 . 4 . 045018 . 10.1088/1361-6382/abd3e0. 2007.04354 . 2021CQGra..38d5018I . 220424477 .
  7. Gaur. Visser. Black holes embedded in FLRW cosmologies. 2023 . gr-qc . 2308.07374.
  8. Andrew Hamilton: Black hole Penrose diagrams (JILA Colorado)
  9. https://www.researchgate.net/figure/The-Penrose-Carter-diagram-of-the-maximal-Kerr-de-Sitter-spacetime-along-the-symmetry_fig2_338904795 Figure 2
  10. Leonard Susskind: Aspects of de Sitter Holography, timestamp 38:27: video of the online seminar on de Sitter space and Holography, Sept 14, 2021