Kaplan–Yorke conjecture explained
In applied mathematics, the Kaplan–Yorke conjecture concerns the dimension of an attractor, using Lyapunov exponents.[1] [2] By arranging the Lyapunov exponents in order from largest to smallest
, let
j be the largest index for which
and
Then the conjecture is that the dimension of the attractor is
This idea is used for the definition of the Lyapunov dimension.[3]
Examples
Especially for chaotic systems, the Kaplan–Yorke conjecture is a useful tool in order to estimate the fractal dimension and the Hausdorff dimension of the corresponding attractor.[4] [3]
- The Hénon map with parameters a = 1.4 and b = 0.3 has the ordered Lyapunov exponents
and
. In this case, we find
j = 1 and the dimension formula reduces to
,
and
. The resulting Lyapunov exponents are . Noting that
j = 2, we find
Notes and References
- Book: J. . Kaplan . J. . Yorke . James A. Yorke . Chaotic behavior of multidimensional difference equations . Functional Differential Equations and the Approximation of Fixed Points . Lecture Notes in Mathematics . 730 . H. O. . Peitgen . H. O. . Walther . Springer . Berlin . 1979 . 204–227 . 978-0-387-09518-9 . http://yorke.umd.edu/Yorke_papers_most_cited_and_post2000/1979_C11_Kaplan_multidimensional.pdf . 0547989.
- P. . Frederickson . J. . Kaplan . E. . Yorke . J. . Yorke . The Lyapunov Dimension of Strange Attractors . . 49 . 1983 . 2 . 185–207 . 10.1016/0022-0396(83)90011-6 . 1983JDE....49..185F . free .
- Book: Nikolay . Kuznetsov . Volker . Reitmann . 2020. Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Springer. Cham.
- A. . Wolf . A. . Swift . B. . Jack . H. L. . Swinney . J. A. . Vastano . Determining Lyapunov Exponents from a Time Series . . 1985 . 16 . 3 . 285–317 . 10.1016/0167-2789(85)90011-9 . 1985PhyD...16..285W . 10.1.1.152.3162 . 14411384 .