Kaniadakis exponential distribution explained

The Kaniadakis exponential distribution (or κ-exponential distribution) is a probability distribution arising from the maximization of the Kaniadakis entropy under appropriate constraints. It is one example of a Kaniadakis distribution. The κ-exponential is a generalization of the exponential distribution in the same way that Kaniadakis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy.[1] The κ-exponential distribution of Type I is a particular case of the κ-Gamma distribution, whilst the κ-exponential distribution of Type II is a particular case of the κ-Weibull distribution.

Type I

Probability density function

The Kaniadakis κ-exponential distribution of Type I is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics which exhibit power-law tails. This distribution has the following probability density function:[2]

f
\kappa

(x)=(1-\kappa2)\beta\exp\kappa(-\betax)

valid for

x\ge0

, where

0\leq|\kappa|<1

is the entropic index associated with the Kaniadakis entropy and

\beta>0

is known as rate parameter. The exponential distribution is recovered as

\kappa0.

Cumulative distribution function

The cumulative distribution function of κ-exponential distribution of Type I is given by

F\kappa(x)=1-(\sqrt{1+\kappa2\beta2x2}+\kappa2\betax)\expk({-\betax)}

for

x\ge0

. The cumulative exponential distribution is recovered in the classical limit

\kappa0

.

Properties

Moments, expectation value and variance

The κ-exponential distribution of type I has moment of order

m\inN

given by

\operatorname{E}[Xm]=

1-\kappa2
m+1
\prod[1-(2n-m-1)\kappa]
n=0
m!
\betam

where

f\kappa(x)

is finite if

0<m+1<1/\kappa

.

The expectation is defined as:

\operatorname{E}[X]=

1
\beta
1-\kappa2
1-4\kappa2

and the variance is:

\operatorname{Var}[X]=

2
\sigma
\kappa

=

1
\beta2
2(1-4\kappa2)2-(1-\kappa2)2(1-9\kappa2)
(1-4\kappa2)2(1-9\kappa2)

Kurtosis

The kurtosis of the κ-exponential distribution of type I may be computed thought:

\operatorname{Kurt}[X]=\operatorname{E}\left[

\left[X-
1
\beta
1-\kappa2
1-4\kappa2
\right]4
4
\sigma
\kappa

\right]

Thus, the kurtosis of the κ-exponential distribution of type I distribution is given by:

\operatorname{Kurt}[X]=

9(1-\kappa2)(1200\kappa14-6123\kappa12+562\kappa10+1539\kappa8-544\kappa6+143\kappa4-18\kappa2+1)
\beta4
4
\sigma
\kappa
(1-4\kappa2)4(3600\kappa8-4369\kappa6+819\kappa4-51\kappa2+1)

for0\leq\kappa<1/5

or

\operatorname{Kurt}[X]=

9(9\kappa2-1)2(\kappa2-1)(1200\kappa14-6123\kappa12+562\kappa10+1539\kappa8-544\kappa6+143\kappa4-18\kappa2+1)
\beta2(1-4\kappa2)2(9\kappa6+13\kappa4-5\kappa2+1)(3600\kappa8-4369\kappa6+819\kappa4-51\kappa2+1)

for0\leq\kappa<1/5

The kurtosis of the ordinary exponential distribution is recovered in the limit

\kappa0

.

Skewness

The skewness of the κ-exponential distribution of type I may be computed thought:

\operatorname{Skew}[X]=\operatorname{E}\left[

\left[X-
1
\beta
1-\kappa2
1-4\kappa2
\right]3
3
\sigma
\kappa

\right]

Thus, the skewness of the κ-exponential distribution of type I distribution is given by:

\operatorname{Shew}[X]=

2(1-\kappa2)(144\kappa8+23\kappa6+27\kappa4-6\kappa2+1)
\beta3
3
\sigma
\kappa
(4\kappa2-1)3(144\kappa4-25\kappa2+1)

for0\leq\kappa<1/4

The kurtosis of the ordinary exponential distribution is recovered in the limit

\kappa0

.

Type II

Probability density function

The Kaniadakis κ-exponential distribution of Type II also is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics which exhibit power-law tails, but with different constraints. This distribution is a particular case of the Kaniadakis κ-Weibull distribution with

\alpha=1

is:[3]
f
\kappa

(x)=

\beta
\sqrt{1+\kappa2\beta2x2
}\exp_\kappa(-\beta x)

valid for

x\ge0

, where

0\leq|\kappa|<1

is the entropic index associated with the Kaniadakis entropy and

\beta>0

is known as rate parameter.

The exponential distribution is recovered as

\kappa0.

Cumulative distribution function

The cumulative distribution function of κ-exponential distribution of Type II is given by

F\kappa(x)=1-\expk({-\betax)}

for

x\ge0

. The cumulative exponential distribution is recovered in the classical limit

\kappa0

.

Properties

Moments, expectation value and variance

The κ-exponential distribution of type II has moment of order

m<1/\kappa

given by

\operatorname{E}[Xm]=

\beta-mm!
m
\prod[1-(2n-m)\kappa]
n=0

The expectation value and the variance are:

\operatorname{E}[X]=

1
\beta
1
1-\kappa2

\operatorname{Var}[X]=

2
\sigma
\kappa

=

1
\beta2
1+2\kappa4
(1-4\kappa2)(1-\kappa2)2

The mode is given by:

xrm{mode

} = \frac

Kurtosis

The kurtosis of the κ-exponential distribution of type II may be computed thought:

\operatorname{Kurt}[X]=\operatorname{E}\left[\left(

X-
1
\beta
1
1-\kappa2
\sigma\kappa

\right)4\right]

Thus, the kurtosis of the κ-exponential distribution of type II distribution is given by:

\operatorname{Kurt}[X]=

3(72\kappa10-360\kappa8-44\kappa6-32\kappa4+7\kappa2-3)
\beta4
4
\sigma
\kappa
(\kappa2-1)4(576\kappa6-244\kappa4+29\kappa2-1)

for0\leq\kappa<1/4

or

\operatorname{Kurt}[X]=

3(72\kappa10-360\kappa8-44\kappa6-32\kappa4+7\kappa2-3)
(4\kappa2-1)-1(2\kappa4+1)2(144\kappa4-25\kappa2+1)

for0\leq\kappa<1/4

Skewness

The skewness of the κ-exponential distribution of type II may be computed thought:

\operatorname{Skew}[X]=\operatorname{E}\left[

\left[X-
1
\beta
1
1-\kappa2
\right]3
3
\sigma
\kappa

\right]

Thus, the skewness of the κ-exponential distribution of type II distribution is given by:

\operatorname{Skew}[X]=-

2(15\kappa6+6\kappa4+2\kappa2+1)
\beta3
3
\sigma
\kappa
(\kappa2-1)3(36\kappa4-13\kappa2+1)

for0\leq\kappa<1/3

or

\operatorname{Skew}[X]=

2(15\kappa6+6\kappa4+2\kappa2+1)
(1-9\kappa2)(2\kappa4+1)

\sqrt{

1-4\kappa2
1+2\kappa4

}for0\leq\kappa<1/3

The skewness of the ordinary exponential distribution is recovered in the limit

\kappa0

.

Quantiles

The quantiles are given by the following expression

xrm{quantile

} (F_\kappa) = \beta^ \ln_\kappa \Bigg(\frac \Bigg)
with

0\leqF\kappa\leq1

, in which the median is the case :

xrm{median

} (F_\kappa) = \beta^ \ln_\kappa (2)

Lorenz curve

The Lorenz curve associated with the κ-exponential distribution of type II is given by:

l{L}\kappa(F\kappa)=1+

1-\kappa
2\kappa

(1-

1+\kappa
F
\kappa)

-

1+\kappa
2\kappa

(1-

1-\kappa
F
\kappa)
The Gini coefficient is

\operatorname{G}\kappa=

2+\kappa2
4-\kappa2

Asymptotic behavior

The κ-exponential distribution of type II behaves asymptotically as follows:

\limxf\kappa(x)\sim\kappa-1(2\kappa\beta)-1/\kappax(-1

\lim
x\to0+

f\kappa(x)=\beta

Applications

The κ-exponential distribution has been applied in several areas, such as:

See also

External links

Notes and References

  1. Kaniadakis . G. . 2001 . Non-linear kinetics underlying generalized statistics . Physica A: Statistical Mechanics and Its Applications . en . 296 . 3–4 . 405–425 . 10.1016/S0378-4371(01)00184-4. cond-mat/0103467 . 2001PhyA..296..405K . 44275064 .
  2. Kaniadakis . G. . 2021-01-01 . New power-law tailed distributions emerging in κ-statistics (a) . Europhysics Letters . 133 . 1 . 10002 . 10.1209/0295-5075/133/10002 . 0295-5075. 2203.01743 . 2021EL....13310002K . 234144356 .
  3. Kaniadakis . G. . 2021-01-01 . New power-law tailed distributions emerging in κ-statistics (a) . Europhysics Letters . 133 . 1 . 10002 . 10.1209/0295-5075/133/10002 . 0295-5075. 2203.01743 . 2021EL....13310002K . 234144356 .
  4. Oreste . Pierpaolo . Spagnoli . Giovanni . 2018-04-03 . Statistical analysis of some main geomechanical formulations evaluated with the Kaniadakis exponential law . Geomechanics and Geoengineering . en . 13 . 2 . 139–145 . 10.1080/17486025.2017.1373201 . 133860553 . 1748-6025.
  5. Ourabah . Kamel . Tribeche . Mouloud . 2014 . Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics . Physical Review E . en . 89 . 6 . 062130 . 10.1103/PhysRevE.89.062130 . 25019747 . 2014PhRvE..89f2130O . 1539-3755.
  6. da Silva . Sérgio Luiz E. F. . dos Santos Lima . Gustavo Z. . Volpe . Ernani V. . de Araújo . João M. . Corso . Gilberto . 2021 . Robust approaches for inverse problems based on Tsallis and Kaniadakis generalised statistics . The European Physical Journal Plus . en . 136 . 5 . 518 . 10.1140/epjp/s13360-021-01521-w . 2021EPJP..136..518D . 236575441 . 2190-5444.
  7. Macedo-Filho . A. . Moreira . D.A. . Silva . R. . da Silva . Luciano R. . 2013 . Maximum entropy principle for Kaniadakis statistics and networks . Physics Letters A . en . 377 . 12 . 842–846 . 10.1016/j.physleta.2013.01.032. 2013PhLA..377..842M . free .