The Kaniadakis exponential distribution (or κ-exponential distribution) is a probability distribution arising from the maximization of the Kaniadakis entropy under appropriate constraints. It is one example of a Kaniadakis distribution. The κ-exponential is a generalization of the exponential distribution in the same way that Kaniadakis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy.[1] The κ-exponential distribution of Type I is a particular case of the κ-Gamma distribution, whilst the κ-exponential distribution of Type II is a particular case of the κ-Weibull distribution.
The Kaniadakis κ-exponential distribution of Type I is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics which exhibit power-law tails. This distribution has the following probability density function:[2]
f | |
\kappa |
(x)=(1-\kappa2)\beta\exp\kappa(-\betax)
valid for
x\ge0
0\leq|\kappa|<1
\beta>0
\kappa → 0.
The cumulative distribution function of κ-exponential distribution of Type I is given by
F\kappa(x)=1-(\sqrt{1+\kappa2\beta2x2}+\kappa2\betax)\expk({-\betax)}
for
x\ge0
\kappa → 0
The κ-exponential distribution of type I has moment of order
m\inN
\operatorname{E}[Xm]=
1-\kappa2 | |||||||||
|
m! | |
\betam |
where
f\kappa(x)
0<m+1<1/\kappa
The expectation is defined as:
\operatorname{E}[X]=
1 | |
\beta |
1-\kappa2 | |
1-4\kappa2 |
\operatorname{Var}[X]=
2 | |
\sigma | |
\kappa |
=
1 | |
\beta2 |
2(1-4\kappa2)2-(1-\kappa2)2(1-9\kappa2) | |
(1-4\kappa2)2(1-9\kappa2) |
The kurtosis of the κ-exponential distribution of type I may be computed thought:
\operatorname{Kurt}[X]=\operatorname{E}\left[
| |||||||||
|
\right]
or\operatorname{Kurt}[X]=
9(1-\kappa2)(1200\kappa14-6123\kappa12+562\kappa10+1539\kappa8-544\kappa6+143\kappa4-18\kappa2+1)
\beta4 (1-4\kappa2)4(3600\kappa8-4369\kappa6+819\kappa4-51\kappa2+1)
4 \sigma \kappa for 0\leq\kappa<1/5
The kurtosis of the ordinary exponential distribution is recovered in the limit\operatorname{Kurt}[X]=
9(9\kappa2-1)2(\kappa2-1)(1200\kappa14-6123\kappa12+562\kappa10+1539\kappa8-544\kappa6+143\kappa4-18\kappa2+1) \beta2(1-4\kappa2)2(9\kappa6+13\kappa4-5\kappa2+1)(3600\kappa8-4369\kappa6+819\kappa4-51\kappa2+1) for 0\leq\kappa<1/5
\kappa → 0
The skewness of the κ-exponential distribution of type I may be computed thought:
\operatorname{Skew}[X]=\operatorname{E}\left[
| |||||||||
|
\right]
The kurtosis of the ordinary exponential distribution is recovered in the limit\operatorname{Shew}[X]=
2(1-\kappa2)(144\kappa8+23\kappa6+27\kappa4-6\kappa2+1)
\beta3 (4\kappa2-1)3(144\kappa4-25\kappa2+1)
3 \sigma \kappa for 0\leq\kappa<1/4
\kappa → 0
The Kaniadakis κ-exponential distribution of Type II also is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics which exhibit power-law tails, but with different constraints. This distribution is a particular case of the Kaniadakis κ-Weibull distribution with
\alpha=1
f | |
\kappa |
(x)=
\beta | |
\sqrt{1+\kappa2\beta2x2 |
valid for
x\ge0
0\leq|\kappa|<1
\beta>0
The exponential distribution is recovered as
\kappa → 0.
The cumulative distribution function of κ-exponential distribution of Type II is given by
F\kappa(x)=1-\expk({-\betax)}
for
x\ge0
\kappa → 0
The κ-exponential distribution of type II has moment of order
m<1/\kappa
\operatorname{E}[Xm]=
\beta-mm! | |||||||||
|
The expectation value and the variance are:
\operatorname{E}[X]=
1 | |
\beta |
1 | |
1-\kappa2 |
\operatorname{Var}[X]=
2 | |
\sigma | |
\kappa |
=
1 | |
\beta2 |
1+2\kappa4 | |
(1-4\kappa2)(1-\kappa2)2 |
The mode is given by:
xrm{mode
The kurtosis of the κ-exponential distribution of type II may be computed thought:
\operatorname{Kurt}[X]=\operatorname{E}\left[\left(
| |||||||||
\sigma\kappa |
\right)4\right]
Thus, the kurtosis of the κ-exponential distribution of type II distribution is given by:
\operatorname{Kurt}[X]=
3(72\kappa10-360\kappa8-44\kappa6-32\kappa4+7\kappa2-3) | ||||||||
|
for 0\leq\kappa<1/4
or
\operatorname{Kurt}[X]=
3(72\kappa10-360\kappa8-44\kappa6-32\kappa4+7\kappa2-3) | |
(4\kappa2-1)-1(2\kappa4+1)2(144\kappa4-25\kappa2+1) |
for 0\leq\kappa<1/4
The skewness of the κ-exponential distribution of type II may be computed thought:
\operatorname{Skew}[X]=\operatorname{E}\left[
| |||||||||
|
\right]
or\operatorname{Skew}[X]=-
2(15\kappa6+6\kappa4+2\kappa2+1)
\beta3 (\kappa2-1)3(36\kappa4-13\kappa2+1)
3 \sigma \kappa for 0\leq\kappa<1/3
The skewness of the ordinary exponential distribution is recovered in the limit\operatorname{Skew}[X]=
2(15\kappa6+6\kappa4+2\kappa2+1) (1-9\kappa2)(2\kappa4+1) \sqrt{
1-4\kappa2 1+2\kappa4 } for 0\leq\kappa<1/3
\kappa → 0
The quantiles are given by the following expression
with} (F_\kappa) = \beta^ \ln_\kappa \Bigg(\frac \Bigg)xrm{quantile
0\leqF\kappa\leq1
} (F_\kappa) = \beta^ \ln_\kappa (2)xrm{median
The Lorenz curve associated with the κ-exponential distribution of type II is given by:
l{L}\kappa(F\kappa)=1+
1-\kappa | |
2\kappa |
(1-
1+\kappa | |
F | |
\kappa) |
-
1+\kappa | |
2\kappa |
(1-
1-\kappa | |
F | |
\kappa) |
\operatorname{G}\kappa=
2+\kappa2 4-\kappa2
The κ-exponential distribution of type II behaves asymptotically as follows:
\limxf\kappa(x)\sim\kappa-1(2\kappa\beta)-1/\kappax(-1
\lim | |
x\to0+ |
f\kappa(x)=\beta
The κ-exponential distribution has been applied in several areas, such as: