Kaniadakis Weibull distribution explained
κ-Weibull distribution |
Type: | density |
Parameters: |
rate shape (real)
rate (real) |
Support: |
| pdf = | \alpha\betax | \sqrt{1+\kappa2\beta2x2 |
}\exp\kappa(-\betax\alpha)
| cdf = 1-\exp\kappa(-\betax\alpha)
|pdf_image=File:Kaniadakis weibull pdf.png|cdf_image=File:Kaniadakis weibull cdf.png|moments=
|mode=\beta(
| \alpha2+2\kappa2(\alpha-1) | 2\kappa2(\alpha2-\kappa2) |
\sqrt{1+
| 4\kappa2(\alpha2-\kappa2)(\alpha-1)2 | [\alpha2+2\kappa2(\alpha-1)]2 |
}-1)1/2
|median=\beta-1/\alpha(ln\kappa(2))1/\alpha
|quantile=
|
The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution.[1] [2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.
Definitions
Probability density function
The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function:[3]
(x)=
| \alpha\betax\alpha-1 |
\sqrt{1+\kappa2\beta2x2\alpha |
} \exp_\kappa(-\beta x^\alpha)
valid for
, where
is the entropic index associated with the
Kaniadakis entropy,
is the scale parameter, and
is the shape parameter or
Weibull modulus.
The Weibull distribution is recovered as
Cumulative distribution function
The cumulative distribution function of κ-Weibull distribution is given by
F\kappa(x)=1-\exp\kappa(-\betax\alpha)
valid for
. The cumulative
Weibull distribution is recovered in the classical limit
.
Survival distribution and hazard functions
The survival distribution function of κ-Weibull distribution is given by
S\kappa(x)=\exp\kappa(-\betax\alpha)
valid for
. The survival
Weibull distribution is recovered in the classical limit
.
The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:
with
, where
is the hazard function:
h\kappa=
| \alpha\betax\alpha-1 |
\sqrt{1+\kappa2\beta2x2\alpha |
}
The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:
where
H\kappa(x)=
rm{arcsinh}\left(\kappa\betax\alpha\right)
is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit
:
.
Properties
Moments, median and mode
The κ-Weibull distribution has moment of order
given by
The median and the mode are:
} (F_\kappa) = \beta^ \Bigg(\ln_\kappa (2)\Bigg)^
} = \beta^ \Bigg(\frac\Bigg)^ \Bigg(\sqrt - 1 \Bigg)^ \quad (\alpha > 1)
Quantiles
The quantiles are given by the following expression
} (F_\kappa) = \beta^ \Bigg[\ln_\kappa \Bigg(\frac{1}{1 - F_\kappa} \Bigg) \Bigg]^
with
.
Gini coefficient
The Gini coefficient is:[3]
\operatorname{G}\kappa=1-
Asymptotic behavior
The κ-Weibull distribution II behaves asymptotically as follows:[3]
\limxf\kappa(x)\sim
(2\kappa\beta)-1/\kappax-1
f\kappa(x)=\alpha\betax\alpha
Related distributions
- The κ-Weibull distribution is a generalization of:
;
and
.
- A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when
and a
Rayleigh distribution when
and
.
Applications
The κ-Weibull distribution has been applied in several areas, such as:
- In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population.[1] [4] [5]
- In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law,[6] and the interval distributions of seismic data, modeling extreme-event return intervals.[7] [8]
- In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis.[9]
See also
External links
Notes and References
- Clementi . F. . Gallegati . M. . Kaniadakis . G. . 2007 . κ-generalized statistics in personal income distribution . The European Physical Journal B . en . 57 . 2 . 187–193 . 10.1140/epjb/e2007-00120-9 . physics/0607293 . 2007EPJB...57..187C . 15777288 . 1434-6028.
- Clementi . F. . Di Matteo . T.. Tiziana Di Matteo (econophysicist) . Gallegati . M. . Kaniadakis . G. . 2008 . The -generalized distribution: A new descriptive model for the size distribution of incomes . Physica A: Statistical Mechanics and Its Applications . en . 387 . 13 . 3201–3208 . 10.1016/j.physa.2008.01.109. 0710.3645 . 2590064 .
- Kaniadakis . G. . 2021-01-01 . New power-law tailed distributions emerging in κ-statistics (a) . Europhysics Letters . 133 . 1 . 10002 . 10.1209/0295-5075/133/10002 . 2203.01743 . 2021EL....13310002K . 234144356 . 0295-5075.
- Clementi . Fabio . Gallegati . Mauro . Kaniadakis . Giorgio . October 2010 . A model of personal income distribution with application to Italian data . Empirical Economics . en . 39 . 2 . 559–591 . 10.1007/s00181-009-0318-2 . 154273794 . 0377-7332.
- Clementi . F . Gallegati . M . Kaniadakis . G . 2012-12-06 . A generalized statistical model for the size distribution of wealth . Journal of Statistical Mechanics: Theory and Experiment . 2012 . 12 . P12006 . 10.1088/1742-5468/2012/12/P12006 . 1209.4787 . 2012JSMTE..12..006C . 18961951 . 1742-5468.
- da Silva . Sérgio Luiz E.F. . 2021 . κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes . Chaos, Solitons & Fractals . en . 143 . 110622 . 10.1016/j.chaos.2020.110622. 2021CSF...14310622D . 234063959 .
- Hristopulos . Dionissios T. . Petrakis . Manolis P. . Kaniadakis . Giorgio . 2014-05-28 . Finite-size effects on return interval distributions for weakest-link-scaling systems . Physical Review E . en . 89 . 5 . 052142 . 10.1103/PhysRevE.89.052142 . 25353774 . 1308.1881 . 2014PhRvE..89e2142H . 22310350 . 1539-3755.
- Hristopulos . Dionissios . Petrakis . Manolis . Kaniadakis . Giorgio . 2015-03-09 . Weakest-Link Scaling and Extreme Events in Finite-Sized Systems . Entropy . en . 17 . 3 . 1103–1122 . 10.3390/e17031103 . 2015Entrp..17.1103H . 1099-4300. free .
- Kaniadakis . Giorgio . Baldi . Mauro M. . Deisboeck . Thomas S. . Grisolia . Giulia . Hristopulos . Dionissios T. . Scarfone . Antonio M. . Sparavigna . Amelia . Wada . Tatsuaki . Lucia . Umberto . 2020 . The κ-statistics approach to epidemiology . Scientific Reports . en . 10 . 1 . 19949 . 10.1038/s41598-020-76673-3 . 2045-2322 . 7673996 . 33203913. 2020NatSR..1019949K .