κ-Erlang distribution | |||||||||||||||||||||||||
Type: | density | ||||||||||||||||||||||||
Parameters: | 0\leq\kappa<1 n=rm{positive}rm{integer} | ||||||||||||||||||||||||
Support: | x\in[0,+infty)
\left[1+(2m-n)\kappa\right]
\exp\kappa(-x)
\left[1+(2m-n)\kappa\right]
zn\exp\kappa(-z)dz |
The Kaniadakis Erlang distribution (or κ-Erlang Gamma distribution) is a family of continuous statistical distributions, which is a particular case of the κ-Gamma distribution, when
\alpha=1
\nu=n=
The Kaniadakis κ-Erlang distribution has the following probability density function:[1]
f | |
\kappa |
(x)=
1 | |
(n-1)! |
n | |
\prod | |
m=0 |
\left[1+(2m-n)\kappa\right]xn\exp\kappa(-x)
valid for
x\geq0
n=rm{positive}rm{integer}
0\leq|\kappa|<1
The ordinary Erlang Distribution is recovered as
\kappa → 0
The cumulative distribution function of κ-Erlang distribution assumes the form:
F\kappa(x)=
1 | |
(n-1)! |
n | |
\prod | |
m=0 |
\left[1+(2m-n)\kappa\right]
x | |
\int | |
0 |
zn\exp\kappa(-z)dz
valid for
x\geq0
0\leq|\kappa|<1
\kappa → 0
The survival function of the κ-Erlang distribution is given by:
The survival function of the κ-Erlang distribution enables the determination of hazard functions in closed form through the solution of the κ-rate equation:S\kappa(x)=1-
1 (n-1)!
n \prod m=0 \left[1+(2m-n)\kappa\right]
x \int 0 zn\exp\kappa(-z)dz
where
S\kappa(x) dx =-h\kappaS\kappa(x)
h\kappa
A family of κ-distributions arises from the κ-Erlang distribution, each associated with a specific value of
n
x\ge0
0\leq|\kappa|<1
F\kappa(x)=1-\left[R\kappa(x)+Q\kappa(x)\sqrt{1+\kappa2x2}\right]\exp\kappa(-x)
where
Q\kappa(x)=N\kappa
n-3 | |
\sum | |
m=0 |
\left(m+1\right)cm+1xm+
N\kappa | |
1-n2\kappa2 |
xn-1
R\kappa(x)=N\kappa
n | |
\sum | |
m=0 |
cmxm
with
N\kappa=
1 | |
(n-1)! |
n | |
\prod | |
m=0 |
\left[1+(2m-n)\kappa\right]
cn=
n\kappa2 | |
1-n2\kappa2 |
cn=0
cn=
n-1 | |
(1-n2\kappa2)[1-(n-2)2\kappa2] |
cm=
(m+1)(m+2) | |
1-m2\kappa2 |
cm+2 rm{for} 0\leqm\leqn-3
The first member (
n=1
f | |
\kappa |
(x)=(1-\kappa2)\exp\kappa(-x)
F\kappa(x)=1-(\sqrt{1+\kappa2x2}+\kappa2x)\expk({-x)}
The second member (
n=2
f | |
\kappa |
(x)=(1-4\kappa2)x\exp\kappa(-x)
F\kappa(x)=1-\left(2\kappa2x2+1+x\sqrt{1+\kappa2x2}\right)\expk({-x)}
The second member (
n=3
f | |
\kappa |
(x)=
1 | |
2 |
(1-\kappa2)(1-9\kappa2)x2\exp\kappa(-x)
F\kappa(x)=1-\left\{
3 | |
2 |
\kappa2(1-\kappa2)x3+x+\left[1+
1 | |
2 |
(1-\kappa2)x2\right]\sqrt{1+\kappa2x2}\right\}\exp\kappa(-x)
n=1
\kappa=0
n=1