Kampé de Fériet function explained

In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.

The Kampé de Fériet function is given by

{}p+qFr+s\left(\begin{matrix} a1,,ap\colonb1,b1{}';;bq,bq{}';\\ c1,,cr\colond1,d1{}';;ds,ds{}'; \end{matrix} x,y\right)= \sum

infty(a1)m+n(ap)m+n
(c1)m+n(cr)m+n
n=0
(b1)m(b1{
')

n(bq)m(bq{}')n}{(d1)m(d1{}')n(ds)m(ds{}')

n}xmyn
m!n!

.

Applications

The general sextic equation can be solved in terms of Kampé de Fériet functions.[1]

See also

References

Notes and References

  1. http://mathworld.wolfram.com/SexticEquation.html Mathworld - Sextic Equation