In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.
The Kampé de Fériet function is given by
{}p+qFr+s\left(\begin{matrix} a1, … ,ap\colonb1,b1{}'; … ;bq,bq{}';\\ c1, … ,cr\colond1,d1{}'; … ;ds,ds{}'; \end{matrix} x,y\right)= \sum
| ||||
n=0 |
(b1)m(b1{ | |
') |
n … (bq)m(bq{}')n}{(d1)m(d1{}')n … (ds)m(ds{}')
|
.
The general sextic equation can be solved in terms of Kampé de Fériet functions.[1]