KR-theory explained

In mathematics, KR-theory is a variant of topological K-theory defined for spaces with an involution. It was introduced by, motivated by applications to the Atiyah–Singer index theorem for real elliptic operators.

Definition

A real space is a defined to be a topological space with an involution. A real vector bundle over a real space X is defined to be a complex vector bundle E over X that is also a real space, such that the natural maps from E to X and from

\Complex

×E to E commute with the involution, where the involution acts as complex conjugation on

\Complex

. (This differs from the notion of a complex vector bundle in the category of Z/2Z spaces, where the involution acts trivially on

\Complex

.)

The group KR(X) is the Grothendieck group of finite-dimensional real vector bundles over the real space X.

Periodicity

Similarly to Bott periodicity, the periodicity theorem for KR states that KRp,q = KRp+1,q+1, where KRp,q is suspension with respect to Rp,q =Rq + iRp (with a switch in the order of p and q), given by

KRp,q(X,Y)=KR(X x Bp,q,X x Sp,q\cupY x Bp,q)

and Bp,q, Sp,q are the unit ball and sphere in Rp,q