Symbol: | KH_1 |
KH domain | |
Pfam: | PF00013 |
Pfam Clan: | CL0007 |
Interpro: | IPR018111 |
Smart: | KH |
Scop: | 1vig |
Pdb: | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
Symbol: | KH_2 |
KH domain | |
Pfam: | PF07650 |
Interpro: | IPR004044 |
Smart: | KH |
Prosite: | PS50823 |
Pdb: | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
The K Homology (KH) domain is a protein domain that was first identified in the human heterogeneous nuclear ribonucleoprotein (hnRNP) K. An evolutionarily conserved sequence of around 70 amino acids, the KH domain is present in a wide variety of nucleic acid-binding proteins. The KH domain binds RNA, and can function in RNA recognition.[1] It is found in multiple copies in several proteins, where they can function cooperatively or independently. For example, in the AU-rich element RNA-binding protein KSRP, which has 4 KH domains, KH domains 3 and 4 behave as independent binding modules to interact with different regions of the AU-rich RNA targets.[1] The solution structure of the first KH domain of FMR1 and of the C-terminal KH domain of hnRNP K determined by nuclear magnetic resonance (NMR) revealed a beta-alpha-alpha-beta-beta-alpha structure.[2] [3] Autoantibodies to NOVA1, a KH domain protein, cause paraneoplastic opsoclonus ataxia. The KH domain is found at the N-terminus of the ribosomal protein S3. This domain is unusual in that it has a different fold compared to the normal KH domain.[4]
KH domains bind to either RNA or single stranded DNA. The nucleic acid is bound in an extended conformation across one side of the domain. The binding occurs in a cleft formed between alpha helix 1, alpha helix 2 the GXXG loop (contains a highly conserved sequence motif) and the variable loop.[5] The binding cleft is hydrophobic in nature with a variety of additional protein specific interactions to stabilise the complex. Valverde and colleagues note that, "Nucleic acid base-to-protein aromatic side chain stacking interactions which are prevalent in other types of single stranded nucleic acid binding motifs, are notably absent in KH domain nucleic acid recognition".[5]
Structurally there are two different types of KH domains identified by Grishin which are called type I and type II.[4] The type I domains are mainly found in eukaryotic proteins, while the type II domains are predominantly found in prokaryotes. While both types share a minimal consensus sequence motif they have different structural folds. The type I KH domains have a three stranded beta-sheet where all three strands are anti-parallel. In the type II domain two of the three beta strands are in a parallel orientation. While type I domains are usually found in multiple copies within proteins, the type II are typically found in a single copy per protein.[5]