Kesterite Explained

Kësterite
Category:Sulfide mineral
Imasymbol:Kës[1]
Strunz:2.CB.15a
Class:Disphenoidal
H-M symbol:
Symmetry:I
Unit Cell:a = 5.427, c = 10.871 [Å]; Z = 2
Color:Greenish black
Habit:Massive, pseudocubic
Cleavage:None
Mohs:4.5
Luster:Metallic
Streak:Black
Gravity:4.54–4.59 (meas.); 4.524 (calc.)
Diaphaneity:Opaque
References:[2] [3] [4]

Kësterite is a sulfide mineral with a chemical formula of . In its lattice structure, zinc and iron atoms share the same lattice sites. Kesterite is the Zn-rich variety whereas the Zn-poor form is called ferrokesterite or stannite. Owing to their similarity, kesterite is sometimes called isostannite. The synthetic form of kesterite is abbreviated as CZTS (from copper zinc tin sulfide). The name kesterite is sometimes extended to include this synthetic material and also CZTSe, which contains selenium instead of sulfur.[5] [6]

Occurrence

Kesterite was first described in 1958 in regard to an occurrence in the Kester deposit (and the associated locality) in Ynnakh Mountain, Yana basin, Yakutia, Russia, where it was discovered.[2] [3] [4]

It is usually found in quartz-sulfide hydrothermal veins associated with tin ore deposits.[2] Associated minerals include arsenopyrite, stannoidite, chalcopyrite, chalcocite, sphalerite and tennantite.[4]

Stannite and kesterite occur together in the Ivigtut cryolite deposit of South Greenland. Solid solutions form between Cu2FeSnS4 and Cu2ZnSnS4 at temperatures above 680 °C. This accounts for the exsolved kesterite in stannite found in the cryolite.[7]

Use

Kesterite like substances are being researched as a solar photovoltaic material.[8]

Notes and References

  1. Warr. L.N.. 2021. IMA–CNMNC approved mineral symbols. Mineralogical Magazine. 85. 3. 291–320. 10.1180/mgm.2021.43. 2021MinM...85..291W. 235729616. free.
  2. http://webmineral.com/data/Kesterite.shtml Kesterite
  3. http://www.mindat.org/min-2189.html Kesterite
  4. http://rruff.geo.arizona.edu/doclib/hom/kesterite.pdf Kesterite
  5. Book: Uwe Rau. Daniel Abou-Ras. Thomas Kirchartz. Advanced Characterization Techniques for Thin Film Solar Cells. 2011. John Wiley & Sons. 978-3-527-63629-7. 351.
  6. Ingrid Repins, Nirav Vora, Carolyn Beall,Su-Huai Wei, Yanfa Yan, Manuel Romero, Glenn Teeter, Hui Du, Bobby To, Matt Young, and Rommel Noufi. "Kesterites and Chalcopyrites: A Comparison of Close Cousins" Presented at the 2011 Materials Research Society Spring MeetingSan Francisco, California, April 25–29, 2011 NREL Preprint
  7. S Karup-Møller, Galena and Associated Ore Minerals from the Cryolite at Ivigtut, South Greenland, Commission for Scientific Research in Greenland, 1979, pp. 8-9
  8. C&EN. Mark Peplow, special to. Kesterite solar cells get ready to shine . Chemical & Engineering News . 12 February 2018. 96. 7. 15–18.