Kähler–Einstein metric explained
In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most important special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat.
The most important problem for this area is the existence of Kähler–Einstein metrics for compact Kähler manifolds. This problem can be split up into three cases dependent on the sign of the first Chern class of the Kähler manifold:
- When the first Chern class is negative, there is always a Kähler–Einstein metric, as Thierry Aubin and Shing-Tung Yau proved independently.
- When the first Chern class is zero, there is always a Kähler–Einstein metric, as Yau proved in the Calabi conjecture. That leads to the name Calabi–Yau manifolds. He was awarded with the Fields Medal partly because of this work.
- The third case, the positive or Fano case, remained a well-known open problem for many years. In this case, there is a non-trivial obstruction to existence. In 2012, Xiuxiong Chen, Simon Donaldson, and Song Sun proved that in this case existence is equivalent to an algebro-geometric criterion called K-stability. Their proof appeared in a series of articles in the Journal of the American Mathematical Society.[1] [2] [3] A proof was produced independently by Gang Tian at the same time.
When first Chern class is not definite, or we have intermediate Kodaira dimension, then finding canonical metric remained as an open problem, which is called the algebrization conjecture via analytical minimal model program.
Definition
Einstein manifolds
See main article: article and Einstein manifold.
Suppose
is a
Riemannian manifold. In physics the
Einstein field equations are a set of
partial differential equations on the
metric tensor
which describe how the manifold
should curve due to the existence of mass or energy, a quantity encapsulated by the
stress–energy tensor
. In a vacuum where there is no mass or energy, that is
, the Einstein Field Equations simplify. Namely, the
Ricci curvature of
is a symmetric
-tensor, as is the metric
itself, and the equations reduce to
where
is the
scalar curvature of
. That is, the Ricci curvature becomes proportional to the metric. A Riemannian manifold
satisfying the above equation is called an
Einstein manifold.
Every two-dimensional Riemannian manifold is Einstein. It can be proven using the Bianchi identities that, in any larger dimension, the scalar curvature of any connected Einstein manifold must be constant. For this reason, the Einstein condition is often given as
for a real number
Kähler manifolds
See main article: article and Kähler manifold.
When the Riemannian manifold
is also a
complex manifold, that is it comes with an integrable
almost-complex structure
, it is possible to ask for a compatibility between the metric structure
and the complex structure
. There are many equivalent ways of formulating this compatibility condition, and one succinct interpretation is to ask that
is
orthogonal with respect to
, so that
for all vector fields
, and that
is preserved by the
parallel transport of the
Levi-Civita connection
, captured by the condition
. Such a triple
is called a
Kähler manifold.
Kähler–Einstein metrics
A Kähler–Einstein manifold is one which combines the above properties of being Kähler and admitting an Einstein metric. The combination of these properties implies a simplification of the Einstein equation in terms of the complex structure. Namely, on a Kähler manifold one can define the Ricci form, a real
-form, by the expression
\rho(u,v)=\operatorname{Ric}g(Ju,v),
where
are any tangent
vector fields to
.
The almost-complex structure
forces
to be antisymmetric, and the compatibility condition
combined with the Bianchi identity implies that
is a
closed differential form. Associated to the Riemannian metric
is the
Kähler form
defined by a similar expression
. Therefore the Einstein equations for
can be rewritten as
the Kähler–Einstein equation.
Since this is an equality of closed differential forms, it implies an equality of the associated de Rham cohomology classes
and
. The former class is the first
Chern class of
,
. Therefore a necessary condition for the existence of a solution to the Kähler–Einstein equation is that
, for some
. This is a topological necessary condition on the Kähler manifold
.
Note that since the Ricci curvature
is invariant under scaling
, if there is a metric such that
, one can always normalise to a new metric with
, that is
. Thus the Kähler–Einstein equation is often written
\rho=-\omega, \rho=0, \rho=\omega
depending on the sign of the topological constant
.
Transformation to a complex Monge–Ampere equation
The situation of compact Kähler manifolds is special, because the Kähler–Einstein equation can be reformulated as a complex Monge–Ampere equation for a smooth Kähler potential on
.
[4] By the topological assumption on the Kähler manifold, we may always assume that there exists some Kähler metric
. The Ricci form
of
is given in local coordinates by the formula
\rho0=-i\partial\bar\partiallog
By assumption
and
are in the same cohomology class
, so the
-lemma from
Hodge theory implies there exists a smooth function
such that
\omega0+i\partial\bar\partialF=\rho0
.
Any other metric
is related to
by a Kähler potential
such that
\omega=\omega0+i\partial\bar\partial\varphi
. It then follows that if
is the Ricci form with respect to
, then
\rho-\rho0=-i\partial\bar\partiallog
.
Thus to make
we need to find
such that
λi\partial\bar\partial\varphi=i\partial\bar\partialF-i\partial\bar\partiallog
.
This will certainly be true if the same equation is proven after removing the derivatives
, and in fact this is an equivalent equation by the
-lemma up to changing
by the addition of a constant function. In particular, after removing
and exponentiating, the equation is transformed into
(\omega0+i\partial\bar\partial\varphi)n=eF-λ
This
partial differential equation is similar to a real
Monge–Ampere equation, and is known as a complex Monge–Ampere equation, and subsequently can be studied using tools from
convex analysis. Its behaviour is highly sensitive to the sign of the topological constant
. The solutions of this equation appear as critical points of the
K-energy functional introduced by
Toshiki Mabuchi on the space of Kähler potentials in the class
.
Existence
The existence problem for Kähler–Einstein metrics can be split up into three distinct cases, dependent on the sign of the topological constant
. Since the Kähler form
is always a
positive differential form, the sign of
depends on whether the cohomology class
is positive, negative, or zero. In
algebraic geometry this is understood in terms of the
canonical bundle of
:
if and only if the canonical bundle
is an
ample line bundle, and
if and only if
is ample. If
is a trivial line bundle, then
.When the Kähler manifold is
compact, the problem of existence has been completely solved.
The case c1(X)<0
When the Kähler manifold
satisfies the topological assumption
, the canonical bundle is ample and so
must be negative. If the necessary topological assumption is satisfied, that is there exists a Kähler metric
such that
, then it was proven by Aubin and Yau that a Kähler–Einstein metric always exists.
[5] [6] The existence of a Kähler metric satisfying the topological assumption is a consequence of Yau's proof of the
Calabi conjecture.
Theorem (Aubin, Yau): A compact Kähler manifold with
always admits a Kähler–Einstein metric.
The case c1(X)=0
See also: Calabi–Yau manifold and Calabi conjecture. When the canonical bundle
is trivial, so that
, the manifold is said to be
Calabi–Yau. These manifolds are of special significance in physics, where they should appear as the
string background in
superstring theory in 10 dimensions. Mathematically, this corresponds to the case where
, that is, when the Riemannian manifold
is Ricci flat.
The existence of a Kähler–Einstein metric was proven in this case by Yau, using a continuity method similar to the case where
.
[7] The topological assumption assumption
introduces new difficulties into the continuity method. Partly due to his proof of existence, and the related proof of the
Calabi conjecture, Yau was awarded the
Fields medal.
Theorem (Yau): A compact Kähler manifold with trivial canonical bundle, a Calabi–Yau manifold, always admits a Kähler–Einstein metric, and in particular admits a Ricci-flat metric.
The case c1(X)>0
See also: Fano manifold, K-stability and K-stability of Fano varieties.
When the anticanonical bundle
is ample, or equivalently
, the manifold is said to be Fano. In contrast to the case
, a Kähler–Einstein metric does not always exist in this case. It was observed by Akito Futaki that there are possible obstructions to the existence of a solution given by the
holomorphic vector fields of
, and it is a necessary condition that the
Futaki invariant of these vector fields is non-negative.
[8] Indeed, much earlier it had been observed by Matsushima and Lichnerowicz that another necessary condition is that the Lie algebra of holomorphic vector fields
must be
reductive.
[9] [10] It was conjectured by Yau in 1993, in analogy with the similar problem of existence of Hermite–Einstein metrics on holomorphic vector bundles, that the obstruction to existence of a Kähler–Einstein metric should be equivalent to a certain algebro-geometric stability condition similar to slope stability of vector bundles.[11] In 1997 Tian Gang proposed a possible stability condition, which came to be known as K-stability.[12]
The conjecture of Yau was resolved in 2012 by Chen–Donaldson–Sun using techniques largely different from the classical continuity method of the case
, and at the same time by Tian.
[13] [14] Chen–Donaldson–Sun have disputed Tian's proof, claiming that it contains mathematical inaccuracies and material which should be attributed to them. Tian has disputed these claims. The 2019
Veblen prize was awarded to Chen–Donaldson–Sun for their proof.
[15] Donaldson was awarded the 2015
Breakthrough Prize in Mathematics in part for his contribution to the proof,
[16] and the 2021 New Horizons Breakthrough Prize was awarded to Sun in part for his contribution.
[17] Theorem: A compact Fano manifold
admits a Kähler–Einstein metric if and only if the pair
is K-polystable.
A proof based along the lines of the continuity method which resolved the case
was later provided by Datar–Székelyhidi, and several other proofs are now known.
[18] [19] See the Yau–Tian–Donaldson conjecture for more details.
Kähler–Ricci flow and the minimal model program
A central program in birational geometry is the minimal model program, which seeks to generate models of algebraic varieties inside every birationality class, which are in some sense minimal, usually in that they minimize certain measures of complexity (such as the arithmetic genus in the case of curves). In higher dimensions, one seeks a minimal model which has nef canonical bundle. One way to construct minimal models is to contract certain curves
inside an algebraic variety
which have negative self-intersection. These curves should be thought of geometrically as subvarieties on which
has a concentration of negative curvature.
In this sense, the minimal model program can be viewed as an analogy of the Ricci flow in differential geometry, where regions where curvature concentrate are expanded or contracted in order to reduce the original Riemannian manifold to one with uniform curvature (precisely, to a new Riemannian manifold which has uniform Ricci curvature, which is to say an Einstein manifold). In the case of 3-manifolds, this was famously used by Grigori Perelman to prove the Poincaré conjecture.
In the setting of Kähler manifolds, the Kähler–Ricci flow was first written down by Cao.[20] Here one fixes a Kähler metric
with Ricci form
, and studies the
geometric flow for a family of Kähler metrics
parametrised by
:
} = -\tilde_ + \rho_,\quad \tilde_(0) = g_.When a projective variety
is of
general type, the minimal model
admits a further simplification to a
canonical model
, with ample canonical bundle. In settings where there are only mild (
orbifold) singularities to this canonical model, it is possible to ask whether the Kähler–Ricci flow of
converges to a (possibly mildly singular) Kähler–Einstein metric on
, which should exist by Yau and Aubin's existence result for
.
A precise result along these lines was proven by Cascini and La Nave,[21] and around the same time by Tian–Zhang.[22]
Theorem: The Kähler–Ricci flow on a projective variety
of general type exists for all time, and after at most a finite number of singularity formations, if the canonical model
of
has at worst orbifold singularities, then the Kähler–Ricci flow on
converges to the Kähler–Einstein metric on
, up to a bounded function which is smooth away from an analytic subvariety of
.
In the case where the variety
is of dimension two, so is a surface of general type, one gets convergence to the Kähler–Einstein metric on
.
Later, Jian Song and Tian studied the case where the projective variety
has log-terminal singularities.
[23] Kähler–Ricci flow and existence of Kähler–Einstein metrics
It is possible to give an alternative proof of the Chen–Donaldson–Sun theorem on existence of Kähler–Einstein metrics on a smooth Fano manifold using the Kähler-Ricci flow, and this was carried out in 2018 by Chen–Sun–Wang.[24] Namely, if the Fano manifold is K-polystable, then the Kähler-Ricci flow exists for all time and converges to a Kähler–Einstein metric on the Fano manifold.
Generalizations and alternative notions
Constant scalar curvature Kähler metrics
See main article: article and Constant scalar curvature Kähler metric. When the canonical bundle
is not trivial, ample, or anti-ample, it is not possible to ask for a Kähler–Einstein metric, as the class
cannot contain a Kähler metric, and so the necessary topological condition can never be satisfied. This follows from the
Kodaira embedding theorem.
A natural generalisation of the Kähler–Einstein equation to the more general setting of an arbitrary compact Kähler manifold is to ask that the Kähler metric has constant scalar curvature (one says the metric is cscK). The scalar curvature is the total trace of the Riemannian curvature tensor, a smooth function on the manifold
, and in the Kähler case the condition that the scalar curvature is constant admits a transformation into an equation similar to the complex Monge–Ampere equation of the Kähler–Einstein setting. Many techniques from the Kähler–Einstein case carry on to the cscK setting, albeit with added difficulty, and it is conjectured that a similar algebro-geometric stability condition should imply the existence of solutions to the equation in this more general setting.
When the compact Kähler manifold satisfies the topological assumptions necessary for the Kähler–Einstein condition to make sense, the constant scalar curvature Kähler equation reduces to the Kähler–Einstein equation.
Hermite–Einstein metrics
See main article: article and Hermitian Yang–Mills connection. Instead of asking the Ricci curvature of the Levi-Civita connection on the tangent bundle of a Kähler manifold
is proportional to the metric itself, one can instead ask this question for the curvature of a
Chern connection associated to a
Hermitian metric on
any holomorphic vector bundle over
(note that the Levi-Civita connection on the holomorphic tangent bundle is precisely the Chern connection of the Hermitian metric coming from the Kähler structure). The resulting equation is called the Hermite–Einstein equation, and is of special importance in
gauge theory, where it appears as a special case of the
Yang–Mills equations, which come from
quantum field theory, in contrast to the regular Einstein equations which come from
general relativity.
In the case where the holomorphic vector bundle is again the holomorphic tangent bundle and the Hermitian metric is the Kähler metric, the Hermite–Einstein equation reduces to the Kähler–Einstein equation. In general however, the geometry of the Kähler manifold is often fixed and only the bundle metric is allowed to vary, and this causes the Hermite–Einstein equation to be easier to study than the Kähler–Einstein equation in general. In particular, a complete algebro-geometric characterisation of the existence of solutions is given by the Kobayashi–Hitchin correspondence.
References
- Book: Moroianu, Andrei . Lectures on Kähler Geometry . 2007 . London Mathematical Society Student Texts . 69 . Cambridge . 978-0-521-68897-0 .
Notes and References
- 119641827 . Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities . Journal of the American Mathematical Society . 2014 . 28 . 183–197 . 10.1090/S0894-0347-2014-00799-2 . 1211.4566 . Chen . Xiuxiong . Donaldson . Simon . Simon Donaldson . Sun . Song.
- 10.1090/S0894-0347-2014-00800-6 . Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π . 2014 . Chen . Xiuxiong . Donaldson . Simon. Simon Donaldson . Sun . Song . 119140033 . Journal of the American Mathematical Society . 28 . 199–234 . 1212.4714.
- 10.1090/S0894-0347-2014-00801-8 . Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof . 2014 . Chen . Xiuxiong . Donaldson . Simon . Simon Donaldson . Sun . Song . 119575364 . Journal of the American Mathematical Society . 28 . 235–278 . 1302.0282.
- Book: Székelyhidi, Gabor . An introduction to extremal Kähler metrics . 2014 . Graduate Studies in Mathematics . 152 . American Mathematical Soc. . 978-1-470-41047-6.
- T. . Aubin . Équations du type Monge-Ampère sur les variétés kähleriennes compactes . . Sér. A-B . 283 . 3 . Aiii, A119–A121 . 1976 .
- Shing-Tung . Yau . Shing-Tung Yau . Calabi's conjecture and some new results in algebraic geometry . . 74 . 5 . 1798–1799 . 1977 . 10.1073/pnas.74.5.1798. 16592394 . 431004 . 1977PNAS...74.1798Y . free .
- [Shing-Tung Yau]
- A. . Futaki . An obstruction to the existence of Einstein Kähler metrics . Invent. Math. . 73 . 1983 . 3 . 437–443 . 10.1007/BF01388438 . 1983InMat..73..437F . 121382431 .
- Yozo . Matsushima . Yozo Matsushima . Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne . Nagoya Math. J. . 11 . 145–150 . 1957 . 10.1017/S0027763000002026 . free .
- Book: Lichnerowicz, André . André Lichnerowicz
. André Lichnerowicz . Géométrie des groupes de transformations . Travaux et Recherches Mathématiques . III . Dunod . Paris . 1958 .
- Book: Yau, S.-T. . Open problems in geometry . Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) . 54 . Proc. Sympos. Pure Math. . 1–28 . Amer. Math. Soc. . Providence, RI . 1993 . 0-8218-1494-X .
- Tian. Gang. Tian Gang. 1997. Kähler-Einstein metrics with positive scalar curvature. Inventiones Mathematicae. 130. 1. 1–37. 10.1007/s002220050176. 1997InMat.130....1T. 1471884. 122529381.
- Tian . G. . 2015 . K‐stability and Kähler–Einstein metrics . Communications on Pure and Applied Mathematics . 68 . 7 . 1085–1156 . 10.1002/cpa.21578 . 1211.4669 . 119303358 .
- Tian . G. . Corrigendum: K-stability and Kähler–Einstein metrics . Communications on Pure and Applied Mathematics . 68 . 11 . 2082–2083 . 2015 . 10.1002/cpa.21612 . free .
- Web site: 2019 Oswald Veblen Prize in Geometry to Xiuxiong Chen, Simon Donaldson, and Song Sun. 2018-11-19. American Mathematical Society. 2019-04-09.
- https://breakthroughprize.org/Laureates/L55 Simon Donaldson "For the new revolutionary invariants of four-dimensional manifolds and for the study of the relation between stability in algebraic geometry and in global differential geometry, both for bundles and for Fano varieties."
- https://breakthroughprize.org/News/60 Breakthrough Prize in Mathematics 2021
- G. . Székelyhidi . The partial
-estimate along the continuity method . J. Amer. Math. Soc. . 29 . 2016 . 537–560 . 10.1090/jams/833 . 1310.8471 .
- V. . Datar . G. . Székelyhidi . Kähler–Einstein metrics along the smooth continuity method . Geom. Funct. Anal. . 26 . 2016 . 4 . 975–1010 . 10.1007/s00039-016-0377-4 . 1506.07495 . 118246980 .
- Cao . Huai-Dong . Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds . Inventiones Mathematicae . 81 . 1985 . 2 . 359–372 . 10.1007/BF01389058 . 1985InMat..81..359C . 124733796 .
- Cascini . P. . La Nave . G. . 2006 . Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties . math/0603064 .
- Tian . G. . Zhang . Z. . 2006 . On the Kähler–Ricci flow on projective manifolds of general type . Chinese Annals of Mathematics, Series B . 27 . 2 . 179–192 . 10.1007/s11401-005-0533-x . 16476473 .
- 0909.4898 . Song . Jian . Tian . Gang . Gang Tian . The Kahler-Ricci flow through singularities . 2009 . math.DG .
- Xiuxiong . Chen . Song . Sun . Bing . Wang . Kähler–Ricci flow, Kähler–Einstein metric, and K–stability . Geom. Topol. . 2 . 6 . 3145–3173 . 2018 . 10.2140/gt.2018.22.3145 . 1508.04397 . 5667938 .