Julyan Cartwright Explained

Julyan Cartwright
Birth Place:Manchester, UK[1]
Citizenship:British
Fields:dynamical systems, nonlinear science, complexity, pattern formation
Alma Mater:University of Newcastle upon Tyne,
Queen Mary College, University of London
Doctoral Advisor:David Arrowsmith
Academic Advisors:Ian C. Percival,
Keith Runcorn,
David Tritton
Work Institution:CSIC (Spanish National Research Council)

Julyan Cartwright is an interdisciplinary physicist working in Granada, Spain at the Andalusian Earth Sciences Institute[2] of the CSIC (Spanish National Research Council) and affiliated with the Carlos I Institute of Theoretical and Computational Physics[3] at the University of Granada.

He is known for his research[4] on how form and pattern emerge in nature,[5] the dynamics of natural systems,[6] across disciplinary boundaries, including his studies of the dynamics of passive scalars in chaotic advection of fluids,[7] [8] bailout embeddings,[9] the Bogdanov map,[10] the influence of fluid mechanics on the development of vertebrate left-right asymmetry,[11] self-organization of biomineralization structures of mollusc shell including mother of pearl (nacre)[12] [13] [14] and cuttlebone,[15] excitable media,[16] and chemobrionics:[17] self-assembling porous precipitate structures, such as chemical gardens,[18] brinicles,[19] and submarine hydrothermal vents.[20]

He is among the researchers in the Stanford list of the World's top 2% most cited scientists.[21] [22] He is chair of the international COST action Chemobionics[23] and chair of the scientific advisory committee to the international conference Dynamics Days Europe.[24] He is editor of the Cambridge University Press journal Elements in Dynamical Systems.[25]

Press interest in his research has highlighted his work on chemical gardens,[26] [27] on pitch perception in the auditory system,[28] [29] on how symmetry is broken so that the heart is on the left,[30] [31] on how bees construct spiral bee combs,[32] [33] [34] on the formation of nacre[35] and pearls,[36] [37] [38] [39] [40] on how brinicle ice tubes grow both on Earth[41] [42] [43] and on Jupiter's moon, Europa,[44] on the information content of complex self-assembled materials[45] [46] [47] [48] on the rogue wave[49] nature of Hokusai's famous artwork the Great Wave off Kanagawa,[50] [51] [52] on the Möbius strip before Möbius,[53] [54] on the possible melting of oceanic methane hydrate deposits owing to climate change,[55] and on the origin of life at alkaline submarine hydrothermal vents[56] and their relevance to astrobiology.[57]

Notes and References

  1. Web site: Julyan Cartwright - Personal history.
  2. Web site: IACT Staff - Julyan Cartwright.
  3. Web site: List of members of the iC1.
  4. Web site: Julyan Cartwright - Google Scholar.
  5. Guest Editorial - Chemobrionics and Systems Chemistry. ChemSystemsChem. May 2022. 4. 3. 10.1002/syst.202200002. Čejková. Jitka. Cartwright. Julyan H. E.. 246779143. free. 10261/355623. free.
  6. Web site: The dynamics of natural systems.
  7. Cartwright . Julyan H. E. . Feingold . Mario . Piro . Oreste . Chaotic advection in three-dimensional unsteady incompressible laminar flow . Journal of Fluid Mechanics . Cambridge University Press (CUP) . 316 . 1996-06-10 . 0022-1120 . 10.1017/s0022112096000535 . 259–284. chao-dyn/9504012. 930710 .
  8. Babiano . Armando . Cartwright . Julyan H. E. . Piro . Oreste . Provenzale . Antonello . Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems . Physical Review Letters . American Physical Society (APS) . 84 . 25 . 2000-06-19 . 0031-9007 . 10.1103/physrevlett.84.5764 . 5764–5767. 10991049 . nlin/0007033. 2000PhRvL..84.5764B . 35884368 .
  9. Cartwright . Julyan H. E. . Magnasco . Marcelo O. . Piro . Oreste . Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos . Physical Review E . American Physical Society (APS) . 65 . 4 . 2002-04-03 . 1063-651X . 10.1103/physreve.65.045203 . 045203(R). 12005907 . nlin/0111005. 2002PhRvE..65d5203C . 23498762 .
  10. Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.
  11. Cartwright . J. H. E. . Piro . O. . Tuval . I. . Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates . Proceedings of the National Academy of Sciences . 101 . 19 . 2004-04-26 . 0027-8424 . 10.1073/pnas.0402001101 . 7234–7239. 15118088. 409902 . 2004PNAS..101.7234C . free .
  12. 10.1016/j.jsb.2011.09.011. 21982842. Mineral bridges in nacre. 2011. Checa. Antonio. Cartwright. Julyan. Willinger. Marc-Georg. Journal of Structural Biology. 176. 3. 330–339.
  13. Cartwright, J. H. E., Checa, A. G., Escribano, B., & Sainz-Díaz, C. I. (2009). Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proceedings of the National Academy of Sciences, 106(26), 10499-10504.
  14. Cartwright, J. H. E., & Checa, A. G. (2007). The dynamics of nacre self-assembly. Journal of the Royal Society Interface, 4(14), 491-504.
  15. Checa. Antonio G.. Cartwright. Julyan H. E.. Sánchez-Almazo. Isabel. Andrade. José P.. Ruiz-Raya. Francisco. September 2015. The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Scientific Reports. en. 5. 1. 11513. 10.1038/srep11513. 2045-2322. 4471886. 26086668. 1506.08290 . 2015NatSR...511513C .
  16. Cartwright . Julyan H. E. . Eguíluz . Víctor M. . Hernández-García . Emilio . Piro . Oreste . Dynamics of Elastic Excitable Media . International Journal of Bifurcation and Chaos . 09 . 11 . 1999 . 0218-1274 . 10.1142/s0218127499001620. chao-dyn/9905035 . 2197–2202. 1999IJBC....9.2197C . 9120223 .
  17. Silvana S. S. Cardoso, Julyan H. E. Cartwright, Jitka Čejková, Leroy Cronin, Anne De Wit, Simone Giannerini, Dezső Horváth, Alírio Rodrigues, Michael J. Russell, C. Ignacio Sainz-Díaz, Ágota Tóth; Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. Artif Life 2020; 26 (3): 315–326. doi: https://doi.org/10.1162/artl_a_00323
  18. Barge. Laura M.. Cardoso. Silvana S. S.. Cartwright. Julyan H. E.. Cooper. Geoffrey J. T.. Cronin. Leroy. De Wit. Anne. Doloboff. Ivria J.. Escribano. Bruno. Goldstein. Raymond E.. 2015-08-26. From Chemical Gardens to Chemobrionics. Chemical Reviews. 115. 16. 8652–8703. 10.1021/acs.chemrev.5b00014. 26176351. 0009-2665. free. 20.500.11824/172. free.
  19. Cartwright J H E, B Escribano, D L González, C I Sainz-Díaz & I Tuval. 2013. Brinicles as a case of inverse chemical gardens. Langmuir. 29. 25. 7655–7660. 10.1021/la4009703. 23551166. 1304.1774. 207727184.
  20. The origin of life: the submarine alkaline vent theory at 30. 2019 . 10.1098/rsfs.2019.0104 . Cartwright . Julyan H. E. . Russell . Michael J. . Interface Focus . 9 . 6 . 204753957 . free . 10261/205389 . free .
  21. August 2021 data-update for "Updated science-wide author databases of standardized citation indicators". 2021 . 10.17632/btchxktzyw.3 . Jeroen Baas . Boyack . Kevin . Ioannidis . John P. A. . 3 . Elsevier BV .
  22. Web site: La lista completa de los investigadores más destacados de la Universidad de Granada.
  23. Web site: Chemobrionics - COST.
  24. Web site: European Dynamics Days.
  25. Web site: Elements in Dynamical Systems.
  26. Web site: Recent research provides new data on chemical gardens, whose formation is a mystery for science.
  27. Web site: Philip Ball considers the vegetative soul of an inorganic woodland.
  28. Pump up the bass. 1999 . 10.1038/news990708-7 . Ball . Philip . Nature .
  29. Web site: A pitch for decoding frequency more simply.
  30. Tilt back to turn left . 2004 . 10.1083/jcb1654rr1 . Wells . William A. . Journal of Cell Biology . 165 . 4 . 456 . 2249968 .
  31. Web site: Broken Symmetry. 11 September 2009 .
  32. Web site: Scientists Crack the Mathematical Mystery of Stingless Bees' Spiral Honeycombs.
  33. Web site: Scientists Find These Stunning Spiral Beehives Have a Lot in Common With Crystals.
  34. Web site: Strange, spiral bee combs look like fantastical crystal palaces. Now we know why.. . 22 July 2020 .
  35. Web site: Mother-of-pearl From Shells Could Inspire Regeneration of Human Bones.
  36. Web site: Pearls and the Puzzle of How They Form Perfect Spheres.
  37. Web site: Pearly perfection.
  38. Web site: Micro-ratchet spins pearls with perfect symmetry.
  39. Web site: Researchers Try to Explain How Perfect Pearls Form.
  40. Web site: How pearls get their round shape.
  41. Swimming Beneath the Brinicles, in Antarctica. Wired . Marlow . Jeffrey .
  42. Web site: Ice tubes in polar seas -- 'brinicles' or 'sea stalactites' -- provide clues to origin of life.
  43. Web site: Brinicles and the Origin of Life.
  44. Web site: Self-Assembling Ice Membranes on Europa – Astrobiology.
  45. Web site: Crystals, Information And The Origin of Life.
  46. Bringing crystals to life. 2012. 10.1038/nmat3437. Ball. Philip. Nature Materials. 11. 10. 840. 23001232. free.
  47. Instructions for assembly. 2012. 10.1038/nphys2393. Buchanan. Mark. Nature Physics. 8. 8. 577. 2012NatPh...8..577B. 122568730. free.
  48. Beyond the crystal. 2014. 10.1038/nmat4122. Ball. Philip. Nature Materials. 13. 11. 1003. 25342529.
  49. Web site: When Good Waves Go Rogue. 25 June 2014 .
  50. Web site: Recreating monster waves in art and science.
  51. Web site: Hokusai Under the Wave off Kanagawa.
  52. Web site: Der anstößige Superstar.
  53. Web site: Scoperta la più antica raffigurazione del nastro di Moebius.
  54. Web site: Escher, il nastro di Möbius e gli idiot savant: fin dove si può arrivare col pensiero?. 7 December 2021 .
  55. Web site: 3.5 percent of global methane deposits could be melted by 2100 due to climate change.
  56. Web site: Expertos internacionales debaten en Granada los últimos avances científicos relacionados con el origen de la vida. 12 March 2019 .
  57. Web site: Search for origin of life reaches interstellar dust.